\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A Primal-dual algorithm for unfolding neutron energy spectrum from multiple activation foils

  • * Corresponding author: Zhouhong Wang

    * Corresponding author: Zhouhong Wang 

This work was partly supported by the Chinese NSF grants (nos. 11631013, 11991021, 11971372 and 11991020) and partly supported by the CSC scholarship and Beijing Academy of Artificial Intelligence (BAAI). The authors are grateful to the editor and the referees for their valuable comments and suggestions

Abstract Full Text(HTML) Figure(2) / Table(1) Related Papers Cited by
  • In this paper we propose a robust and efficient primal-dual interior-point method for a nonlinear ill-conditioned problem with associated errors which are arising in the unfolding procedure for neutron energy spectrum from multiple activation foils. Based on the maximum entropy principle and Boltzmann's entropy formula, the discrete form of the unfolding problem is equivalent to computing the analytic center of the polyhedral set $ P = \{x \in R^n \mid Ax = b, x \ge 0\} $, where the matrix $ A \in R^{m\times n} $ is ill-conditioned, and both $ A $ and $ b $ are inaccurate. By some derivations, we find a new regularization method to reformulate the problem into a well-conditioned problem which can also reduce the impact of errors in $ A $ and $ b $. Then based on the primal-dual interior-point methods for linear programming, we propose a hybrid algorithm for this ill-conditioned problem with errors. Numerical results on a set of ill-conditioned problems for academic purposes and two practical data sets for unfolding the neutron energy spectrum are presented to demonstrate the effectiveness and robustness of the proposed method.

    Mathematics Subject Classification: Primary: 65K05, 90C51; Secondary: 65F22.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The standard spectrum and the spectrum solved by PDUP for "data1" in logarithmic coordinates

    Figure 2.  The spectrums solved by SAND-II and PDUP for "data2" in logarithmic coordinates

    Table 1.  Numerical Results for $ A_m = [H_m, H_m], b = H_m e $

    m Algo. No. $ f $ $ g $ Opt. Time(s)
    10 linprog-1 6 $ +\infty $ 4.110e-07 Y 0.235
    linprog-2 5 $ +\infty $ 1.421e-09 Y 0.243
    fmincon 39 13.863 1.286e-13 Y 1.392
    PDUP 11 13.863 8.674e-09 Y 0.071
    20 linprog-1 1001 N 0.285
    linprog-2 5 $ +\infty $ 1.101e-08 Y 0.266
    fmincon 15 27.726 1.528e-13 Y 0.763
    PDUP 13 27.726 3.589e-11 Y 0.092
    50 linprog-1 1001 N 0.820
    linprog-2 6 $ +\infty $ 6.305e-08 Y 0.241
    fmincon 14 69.315 2.336e-13 Y 1.021
    PDUP 16 69.315 1.780e-10 Y 0.127
    100 linprog-1 337 N 1.062
    linprog-2 5 $ +\infty $ 1.299e-07 Y 0.246
    fmincon 13 138.629 1.483e-13 Y 1.117
    PDUP 18 138.629 1.096e-10 Y 0.390
    300 linprog-1 1001 N 41.905
    linprog-2 19 N 1.401
    fmincon 156 415.888 3.855e-13 N 166.530
    PDUP 22 415.888 2.379e-11 Y 3.600
    500 linprog-1 676 N 149.613
    linprog-2 8 N 3.548
    fmincon 77 693.147 6.652e-13 P 385.377
    PDUP 24 693.147 6.288e-11 Y 11.828
     | Show Table
    DownLoad: CSV
  • [1] D. S. Atkinson and P. M. Vaidya, A scaling technique for finding the weighted analytic center of a polytope, Mathematical Programming, 57 (1992), 163-192.  doi: 10.1007/BF01581079.
    [2] E. A. Belogorlov and V. P. Zhigunov, Interpretation of the solution to the inverse problem for the positive function and the reconstruction of neutron spectra, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 235 (1985), 146-163.  doi: 10.1016/0168-9002(85)90256-6.
    [3] D. P. Bertsekas, Necessary and sufficient conditions for a penalty method to be exact, Mathematical Programming, 9 (1975), 87-99.  doi: 10.1007/BF01681332.
    [4] J. F. Bonnans and C. C. Gonzaga, Convergence of interior point algorithms for the monotone linear complementarity problem, Mathematics of Operations Research, 21 (1996), 1-25.  doi: 10.1287/moor.21.1.1.
    [5] S. Boyd and  L. VandenbergheConvex Optimization, Cambridge University Press, Cambridge, 2004.  doi: 10.1017/CBO9780511804441.
    [6] E. J. CandesJ. Romberg and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Transactions on Information Theory, 52 (2006), 489-509.  doi: 10.1109/TIT.2005.862083.
    [7] X. ChenZ. Lu and T. K. Pong, Penalty methods for a class of non-lipschitz optimization problems, SIAM Journal on Optimization, 26 (2016), 1465-1492.  doi: 10.1137/15M1028054.
    [8] G. Cowan, A Survey of Unfolding Methods for Particle Physics, 2002. Available from: https://www.ippp.dur.ac.uk/old/Workshops/02/statistics/proceedings/cowan.pdf.
    [9] F. Z. DehimiA. Seghour and S. E. H. Abaidia, Unfolding of neutron energy spectra with fisher regularisation, IEEE Transactions on Nuclear Science, 57 (2010), 768-774.  doi: 10.1109/TNS.2010.2041791.
    [10] M. P. Friedlander and P. Tseng, Exact regularization of convex programs, SIAM Journal on Optimization, 18 (2008), 1326-1350.  doi: 10.1137/060675320.
    [11] G. H. Golub and C. F. Van Loan, Matrix Computations, 3$^{rd}$ edition, The Johns Hopkins University Press, Baltimore, 1996.
    [12] C. C. Gonzaga and R. A. Tapia, On the convergence of the Mizuno-Todd-Ye algorithm to the analytic center of the solution set, SIAM Journal on Optimization, 7 (1997), 47-65.  doi: 10.1137/S1052623493243557.
    [13] M. D. González-LimaR. A. Tapia and F. A. Potra, On effectively computing the analytic center of the solution set by primal-dual interior-point methods, SIAM Journal on Optimization, 8 (1998), 1-25.  doi: 10.1137/S1052623495291793.
    [14] S. Itoh and T. Tsunoda, Neutron spectra unfolding with maximum entropy and maximum likelihood, Journal of Nuclear Science and Technology, 26 (1989), 833-843.  doi: 10.1080/18811248.1989.9734394.
    [15] M. KojimaN. Megiddo and S. Mizuno, A primal-dual infeasible-interior-point algorithm for linear programming, Mathematical Programming, 61 (1993), 263-280.  doi: 10.1007/BF01582151.
    [16] M. Kojima, S. Mizuno and A. Yoshise, A primal-dual interior point algorithm for linear programming, in Progress in Mathematical Programming: Interior-Point and Related Methods (ed. N. Megiddo), Springer, New York, (1989), 29–47. doi: 10.1007/978-1-4613-9617-8_2.
    [17] I. J. LustigR. E. Marsten and D. F. Shanno, On implementing Mehrotra's predictor-corrector interior-point method for linear programming, SIAM Journal on Optimization, 2 (1992), 435-449.  doi: 10.1137/0802022.
    [18] M. Matzke, Propagation of uncertainties in unfolding procedures, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 476 (2002), 230–241. doi: 10.1016/S0168-9002(01)01438-3.
    [19] S. Mehrotra, On the implementation of a primal-dual interior point method, SIAM Journal on Optimization, 2 (1992), 575-601.  doi: 10.1137/0802028.
    [20] S. Mehrotra, Quadratic convergence in a primal-dual method, Mathematics of Operations Research, 18 (1993), 741-751.  doi: 10.1287/moor.18.3.741.
    [21] S. Mizuno, Polynomiality of infeasible-interior-point algorithms for linear programming, Mathematical Programming, 67 (1994), 109-119.  doi: 10.1007/BF01582216.
    [22] S. MizunoM. J. Todd and Y. Ye, On adaptive-step primal-dual interior-point algorithms for linear programming, Mathematics of Operations Research, 18 (1993), 964-981.  doi: 10.1287/moor.18.4.964.
    [23] B. Mukherjee, A high-resolution neutron spectra unfolding method using the genetic algorithm technique, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 476 (2002), 247-251.  doi: 10.1016/S0168-9002(01)01440-1.
    [24] M. ReginattoP. Goldhagen and S. Neumann, Spectrum unfolding, sensitivity analysis and propagation of uncertainties with the maximum entropy deconvolution code maxed, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 476 (2002), 242-246.  doi: 10.1016/S0168-9002(01)01439-5.
    [25] R. T. RockafellarConvex Analysis, Princeton University Press, Princeton, 1970. 
    [26] C. Roos, T. Terlaky and J.-P. Vial, Interior Point Methods for Linear Optimization, 2$^{nd}$ edition, Springer, Berlin, 2005.
    [27] V. Suman and P. Sarkar, Neutron spectrum unfolding using genetic algorithm in a Monte Carlo simulation, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 737 (2014), 76-86.  doi: 10.1016/j.nima.2013.11.012.
    [28] S. TripathyC. SunilM. NandyP. SarkarD. Sharma and B. Mukherjee, Activation foils unfolding for neutron spectrometry: Comparison of different deconvolution methods, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 583 (2007), 421-425.  doi: 10.1016/j.nima.2007.09.028.
    [29] A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006), 25-57.  doi: 10.1007/s10107-004-0559-y.
    [30] Y. Wang and Y. Yuan, Convergence and regularity of trust region methods for nonlinear ill-posed inverse problems, Inverse Problems, 21 (2005), 821-838.  doi: 10.1088/0266-5611/21/3/003.
    [31] Y. WangY. Yuan and H. Zhang, A trust region-CG algorithm for deblurring problem in atmospheric image reconstruction, Science in China Series A: Mathematics, 45 (2002), 731-740. 
    [32] K. Weise and M. Matzke, A priori distributions from the principle of maximum entropy for the monte carlo unfolding of particle energy spectra, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 280 (1989), 103-112.  doi: 10.1016/0168-9002(89)91277-1.
    [33] M. Wright, Ill-conditioning and computational error in interior methods for nonlinear programming, SIAM Journal on Optimization, 9 (1998), 84-111.  doi: 10.1137/S1052623497322279.
    [34] S. Wright, Effects of finite-precision arithmetic on interior-point methods for nonlinear programming, SIAM Journal on Optimization, 12 (2001), 36-78.  doi: 10.1137/S1052623498347438.
    [35] S. J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, PA, 1996. doi: 10.1137/1.9781611971453.
    [36] Y. YeO. GülerR. A. Tapia and Y. Zhang, A quadratically convergent $o(\sqrt{n}l)$-iteration algorithm for linear programming, Mathematical Programming, 59 (1993), 151-162.  doi: 10.1007/BF01581242.
    [37] Y. Ye, Interior Point Algorithms: Theory and Analysis, John Wiley & Sons, New Jersey, NJ, 1997. doi: 10.1002/9781118032701.
    [38] Y. Zhang and R. A. Tapia, On the Convergence of Interior-Point Methods to the Center of Solution Set in Linear Programming, Technical Report TR91-30, Dept. Mathematical Sciences, Rice University, Houston, TX, 1991. Available from: https://www.researchgate.net/publication/235075603_On_the_Convergence_of_Interior-Point_Methods_to_the_Center_of_the_Solution_Set_in_Linear_Programming. doi: 10.1007/BF01581087.
    [39] Y. Zhang, On the convergence of a class of infeasible interior-point methods for the horizontal linear complementarity problem, SIAM Journal on Optimization, 4 (1994), 208-227.  doi: 10.1137/0804012.
    [40] Y. Zhang, Solving large-scale linear programs by interior-point methods under the matlab environment, Optimization Methods and Software, 10 (1998), 1–31. doi: 10.1080/10556789808805699.
    [41] Y. Zhangsun, Unfolding Method Based on Entropy Theory for the Determination of Neutron Spectrum (in Chinese), Master's thesis, Northwest Institute of Nuclear Technology, Xi'an, Shanxi, P. R. China, 2015.
  • 加载中

Figures(2)

Tables(1)

SHARE

Article Metrics

HTML views(1342) PDF downloads(404) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return