
-
Previous Article
Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk
- JIMO Home
- This Issue
-
Next Article
Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming
A Primal-dual algorithm for unfolding neutron energy spectrum from multiple activation foils
1. | LESC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China |
2. | School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
3. | School of Science, Beijing Jiaotong University, Beijing, 100044, China |
4. | School of Economics and Finance, Xian Jiaotong University, Xi'an, 710061, China |
In this paper we propose a robust and efficient primal-dual interior-point method for a nonlinear ill-conditioned problem with associated errors which are arising in the unfolding procedure for neutron energy spectrum from multiple activation foils. Based on the maximum entropy principle and Boltzmann's entropy formula, the discrete form of the unfolding problem is equivalent to computing the analytic center of the polyhedral set $ P = \{x \in R^n \mid Ax = b, x \ge 0\} $, where the matrix $ A \in R^{m\times n} $ is ill-conditioned, and both $ A $ and $ b $ are inaccurate. By some derivations, we find a new regularization method to reformulate the problem into a well-conditioned problem which can also reduce the impact of errors in $ A $ and $ b $. Then based on the primal-dual interior-point methods for linear programming, we propose a hybrid algorithm for this ill-conditioned problem with errors. Numerical results on a set of ill-conditioned problems for academic purposes and two practical data sets for unfolding the neutron energy spectrum are presented to demonstrate the effectiveness and robustness of the proposed method.
References:
[1] |
D. S. Atkinson and P. M. Vaidya,
A scaling technique for finding the weighted analytic center of a polytope, Mathematical Programming, 57 (1992), 163-192.
doi: 10.1007/BF01581079. |
[2] |
E. A. Belogorlov and V. P. Zhigunov,
Interpretation of the solution to the inverse problem for the positive function and the reconstruction of neutron spectra, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 235 (1985), 146-163.
doi: 10.1016/0168-9002(85)90256-6. |
[3] |
D. P. Bertsekas,
Necessary and sufficient conditions for a penalty method to be exact, Mathematical Programming, 9 (1975), 87-99.
doi: 10.1007/BF01681332. |
[4] |
J. F. Bonnans and C. C. Gonzaga,
Convergence of interior point algorithms for the monotone linear complementarity problem, Mathematics of Operations Research, 21 (1996), 1-25.
doi: 10.1287/moor.21.1.1. |
[5] |
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, 2004.
doi: 10.1017/CBO9780511804441.![]() ![]() |
[6] |
E. J. Candes, J. Romberg and T. Tao,
Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Transactions on Information Theory, 52 (2006), 489-509.
doi: 10.1109/TIT.2005.862083. |
[7] |
X. Chen, Z. Lu and T. K. Pong,
Penalty methods for a class of non-lipschitz optimization problems, SIAM Journal on Optimization, 26 (2016), 1465-1492.
doi: 10.1137/15M1028054. |
[8] |
G. Cowan, A Survey of Unfolding Methods for Particle Physics, 2002. Available from: https://www.ippp.dur.ac.uk/old/Workshops/02/statistics/proceedings/cowan.pdf. Google Scholar |
[9] |
F. Z. Dehimi, A. Seghour and S. E. H. Abaidia,
Unfolding of neutron energy spectra with fisher regularisation, IEEE Transactions on Nuclear Science, 57 (2010), 768-774.
doi: 10.1109/TNS.2010.2041791. |
[10] |
M. P. Friedlander and P. Tseng,
Exact regularization of convex programs, SIAM Journal on Optimization, 18 (2008), 1326-1350.
doi: 10.1137/060675320. |
[11] |
G. H. Golub and C. F. Van Loan, Matrix Computations, 3$^{rd}$ edition, The Johns Hopkins
University Press, Baltimore, 1996. |
[12] |
C. C. Gonzaga and R. A. Tapia,
On the convergence of the Mizuno-Todd-Ye algorithm to the analytic center of the solution set, SIAM Journal on Optimization, 7 (1997), 47-65.
doi: 10.1137/S1052623493243557. |
[13] |
M. D. González-Lima, R. A. Tapia and F. A. Potra,
On effectively computing the analytic center of the solution set by primal-dual interior-point methods, SIAM Journal on Optimization, 8 (1998), 1-25.
doi: 10.1137/S1052623495291793. |
[14] |
S. Itoh and T. Tsunoda,
Neutron spectra unfolding with maximum entropy and maximum likelihood, Journal of Nuclear Science and Technology, 26 (1989), 833-843.
doi: 10.1080/18811248.1989.9734394. |
[15] |
M. Kojima, N. Megiddo and S. Mizuno,
A primal-dual infeasible-interior-point algorithm for linear programming, Mathematical Programming, 61 (1993), 263-280.
doi: 10.1007/BF01582151. |
[16] |
M. Kojima, S. Mizuno and A. Yoshise, A primal-dual interior point algorithm for linear programming, in Progress in Mathematical Programming: Interior-Point and Related Methods (ed. N. Megiddo), Springer, New York, (1989), 29–47.
doi: 10.1007/978-1-4613-9617-8_2. |
[17] |
I. J. Lustig, R. E. Marsten and D. F. Shanno,
On implementing Mehrotra's predictor-corrector interior-point method for linear programming, SIAM Journal on Optimization, 2 (1992), 435-449.
doi: 10.1137/0802022. |
[18] |
M. Matzke, Propagation of uncertainties in unfolding procedures, Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 476 (2002), 230–241.
doi: 10.1016/S0168-9002(01)01438-3. |
[19] |
S. Mehrotra,
On the implementation of a primal-dual interior point method, SIAM Journal on Optimization, 2 (1992), 575-601.
doi: 10.1137/0802028. |
[20] |
S. Mehrotra,
Quadratic convergence in a primal-dual method, Mathematics of Operations Research, 18 (1993), 741-751.
doi: 10.1287/moor.18.3.741. |
[21] |
S. Mizuno,
Polynomiality of infeasible-interior-point algorithms for linear programming, Mathematical Programming, 67 (1994), 109-119.
doi: 10.1007/BF01582216. |
[22] |
S. Mizuno, M. J. Todd and Y. Ye,
On adaptive-step primal-dual interior-point algorithms for linear programming, Mathematics of Operations Research, 18 (1993), 964-981.
doi: 10.1287/moor.18.4.964. |
[23] |
B. Mukherjee,
A high-resolution neutron spectra unfolding method using the genetic algorithm technique, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 476 (2002), 247-251.
doi: 10.1016/S0168-9002(01)01440-1. |
[24] |
M. Reginatto, P. Goldhagen and S. Neumann,
Spectrum unfolding, sensitivity analysis and propagation of uncertainties with the maximum entropy deconvolution code maxed, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 476 (2002), 242-246.
doi: 10.1016/S0168-9002(01)01439-5. |
[25] |
R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.
![]() |
[26] |
C. Roos, T. Terlaky and J.-P. Vial, Interior Point Methods for Linear Optimization, 2$^{nd}$ edition, Springer, Berlin, 2005. |
[27] |
V. Suman and P. Sarkar,
Neutron spectrum unfolding using genetic algorithm in a Monte Carlo simulation, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 737 (2014), 76-86.
doi: 10.1016/j.nima.2013.11.012. |
[28] |
S. Tripathy, C. Sunil, M. Nandy, P. Sarkar, D. Sharma and B. Mukherjee,
Activation foils unfolding for neutron spectrometry: Comparison of different deconvolution methods, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 583 (2007), 421-425.
doi: 10.1016/j.nima.2007.09.028. |
[29] |
A. Wächter and L. T. Biegler,
On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006), 25-57.
doi: 10.1007/s10107-004-0559-y. |
[30] |
Y. Wang and Y. Yuan,
Convergence and regularity of trust region methods for nonlinear ill-posed inverse problems, Inverse Problems, 21 (2005), 821-838.
doi: 10.1088/0266-5611/21/3/003. |
[31] |
Y. Wang, Y. Yuan and H. Zhang,
A trust region-CG algorithm for deblurring problem in atmospheric image reconstruction, Science in China Series A: Mathematics, 45 (2002), 731-740.
|
[32] |
K. Weise and M. Matzke,
A priori distributions from the principle of maximum entropy for the monte carlo unfolding of particle energy spectra, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 280 (1989), 103-112.
doi: 10.1016/0168-9002(89)91277-1. |
[33] |
M. Wright,
Ill-conditioning and computational error in interior methods for nonlinear programming, SIAM Journal on Optimization, 9 (1998), 84-111.
doi: 10.1137/S1052623497322279. |
[34] |
S. Wright,
Effects of finite-precision arithmetic on interior-point methods for nonlinear programming, SIAM Journal on Optimization, 12 (2001), 36-78.
doi: 10.1137/S1052623498347438. |
[35] |
S. J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, PA, 1996.
doi: 10.1137/1.9781611971453. |
[36] |
Y. Ye, O. Güler, R. A. Tapia and Y. Zhang,
A quadratically convergent $o(\sqrt{n}l)$-iteration algorithm for linear programming, Mathematical Programming, 59 (1993), 151-162.
doi: 10.1007/BF01581242. |
[37] |
Y. Ye, Interior Point Algorithms: Theory and Analysis, John Wiley & Sons, New Jersey, NJ, 1997.
doi: 10.1002/9781118032701. |
[38] |
Y. Zhang and R. A. Tapia, On the Convergence of Interior-Point Methods to the Center of Solution Set in Linear Programming, Technical Report TR91-30, Dept. Mathematical Sciences, Rice University, Houston, TX, 1991. Available from: https://www.researchgate.net/publication/235075603_On_the_Convergence_of_Interior-Point_Methods_to_the_Center_of_the_Solution_Set_in_Linear_Programming.
doi: 10.1007/BF01581087. |
[39] |
Y. Zhang,
On the convergence of a class of infeasible interior-point methods for the horizontal linear complementarity problem, SIAM Journal on Optimization, 4 (1994), 208-227.
doi: 10.1137/0804012. |
[40] |
Y. Zhang, Solving large-scale linear programs by interior-point methods under the matlab environment, Optimization Methods and Software, 10 (1998), 1–31.
doi: 10.1080/10556789808805699. |
[41] |
Y. Zhangsun, Unfolding Method Based on Entropy Theory for the Determination of Neutron Spectrum (in Chinese), Master's thesis, Northwest Institute of Nuclear Technology, Xi'an, Shanxi, P. R. China, 2015. Google Scholar |
show all references
References:
[1] |
D. S. Atkinson and P. M. Vaidya,
A scaling technique for finding the weighted analytic center of a polytope, Mathematical Programming, 57 (1992), 163-192.
doi: 10.1007/BF01581079. |
[2] |
E. A. Belogorlov and V. P. Zhigunov,
Interpretation of the solution to the inverse problem for the positive function and the reconstruction of neutron spectra, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 235 (1985), 146-163.
doi: 10.1016/0168-9002(85)90256-6. |
[3] |
D. P. Bertsekas,
Necessary and sufficient conditions for a penalty method to be exact, Mathematical Programming, 9 (1975), 87-99.
doi: 10.1007/BF01681332. |
[4] |
J. F. Bonnans and C. C. Gonzaga,
Convergence of interior point algorithms for the monotone linear complementarity problem, Mathematics of Operations Research, 21 (1996), 1-25.
doi: 10.1287/moor.21.1.1. |
[5] |
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, 2004.
doi: 10.1017/CBO9780511804441.![]() ![]() |
[6] |
E. J. Candes, J. Romberg and T. Tao,
Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Transactions on Information Theory, 52 (2006), 489-509.
doi: 10.1109/TIT.2005.862083. |
[7] |
X. Chen, Z. Lu and T. K. Pong,
Penalty methods for a class of non-lipschitz optimization problems, SIAM Journal on Optimization, 26 (2016), 1465-1492.
doi: 10.1137/15M1028054. |
[8] |
G. Cowan, A Survey of Unfolding Methods for Particle Physics, 2002. Available from: https://www.ippp.dur.ac.uk/old/Workshops/02/statistics/proceedings/cowan.pdf. Google Scholar |
[9] |
F. Z. Dehimi, A. Seghour and S. E. H. Abaidia,
Unfolding of neutron energy spectra with fisher regularisation, IEEE Transactions on Nuclear Science, 57 (2010), 768-774.
doi: 10.1109/TNS.2010.2041791. |
[10] |
M. P. Friedlander and P. Tseng,
Exact regularization of convex programs, SIAM Journal on Optimization, 18 (2008), 1326-1350.
doi: 10.1137/060675320. |
[11] |
G. H. Golub and C. F. Van Loan, Matrix Computations, 3$^{rd}$ edition, The Johns Hopkins
University Press, Baltimore, 1996. |
[12] |
C. C. Gonzaga and R. A. Tapia,
On the convergence of the Mizuno-Todd-Ye algorithm to the analytic center of the solution set, SIAM Journal on Optimization, 7 (1997), 47-65.
doi: 10.1137/S1052623493243557. |
[13] |
M. D. González-Lima, R. A. Tapia and F. A. Potra,
On effectively computing the analytic center of the solution set by primal-dual interior-point methods, SIAM Journal on Optimization, 8 (1998), 1-25.
doi: 10.1137/S1052623495291793. |
[14] |
S. Itoh and T. Tsunoda,
Neutron spectra unfolding with maximum entropy and maximum likelihood, Journal of Nuclear Science and Technology, 26 (1989), 833-843.
doi: 10.1080/18811248.1989.9734394. |
[15] |
M. Kojima, N. Megiddo and S. Mizuno,
A primal-dual infeasible-interior-point algorithm for linear programming, Mathematical Programming, 61 (1993), 263-280.
doi: 10.1007/BF01582151. |
[16] |
M. Kojima, S. Mizuno and A. Yoshise, A primal-dual interior point algorithm for linear programming, in Progress in Mathematical Programming: Interior-Point and Related Methods (ed. N. Megiddo), Springer, New York, (1989), 29–47.
doi: 10.1007/978-1-4613-9617-8_2. |
[17] |
I. J. Lustig, R. E. Marsten and D. F. Shanno,
On implementing Mehrotra's predictor-corrector interior-point method for linear programming, SIAM Journal on Optimization, 2 (1992), 435-449.
doi: 10.1137/0802022. |
[18] |
M. Matzke, Propagation of uncertainties in unfolding procedures, Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 476 (2002), 230–241.
doi: 10.1016/S0168-9002(01)01438-3. |
[19] |
S. Mehrotra,
On the implementation of a primal-dual interior point method, SIAM Journal on Optimization, 2 (1992), 575-601.
doi: 10.1137/0802028. |
[20] |
S. Mehrotra,
Quadratic convergence in a primal-dual method, Mathematics of Operations Research, 18 (1993), 741-751.
doi: 10.1287/moor.18.3.741. |
[21] |
S. Mizuno,
Polynomiality of infeasible-interior-point algorithms for linear programming, Mathematical Programming, 67 (1994), 109-119.
doi: 10.1007/BF01582216. |
[22] |
S. Mizuno, M. J. Todd and Y. Ye,
On adaptive-step primal-dual interior-point algorithms for linear programming, Mathematics of Operations Research, 18 (1993), 964-981.
doi: 10.1287/moor.18.4.964. |
[23] |
B. Mukherjee,
A high-resolution neutron spectra unfolding method using the genetic algorithm technique, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 476 (2002), 247-251.
doi: 10.1016/S0168-9002(01)01440-1. |
[24] |
M. Reginatto, P. Goldhagen and S. Neumann,
Spectrum unfolding, sensitivity analysis and propagation of uncertainties with the maximum entropy deconvolution code maxed, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 476 (2002), 242-246.
doi: 10.1016/S0168-9002(01)01439-5. |
[25] |
R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.
![]() |
[26] |
C. Roos, T. Terlaky and J.-P. Vial, Interior Point Methods for Linear Optimization, 2$^{nd}$ edition, Springer, Berlin, 2005. |
[27] |
V. Suman and P. Sarkar,
Neutron spectrum unfolding using genetic algorithm in a Monte Carlo simulation, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 737 (2014), 76-86.
doi: 10.1016/j.nima.2013.11.012. |
[28] |
S. Tripathy, C. Sunil, M. Nandy, P. Sarkar, D. Sharma and B. Mukherjee,
Activation foils unfolding for neutron spectrometry: Comparison of different deconvolution methods, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 583 (2007), 421-425.
doi: 10.1016/j.nima.2007.09.028. |
[29] |
A. Wächter and L. T. Biegler,
On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006), 25-57.
doi: 10.1007/s10107-004-0559-y. |
[30] |
Y. Wang and Y. Yuan,
Convergence and regularity of trust region methods for nonlinear ill-posed inverse problems, Inverse Problems, 21 (2005), 821-838.
doi: 10.1088/0266-5611/21/3/003. |
[31] |
Y. Wang, Y. Yuan and H. Zhang,
A trust region-CG algorithm for deblurring problem in atmospheric image reconstruction, Science in China Series A: Mathematics, 45 (2002), 731-740.
|
[32] |
K. Weise and M. Matzke,
A priori distributions from the principle of maximum entropy for the monte carlo unfolding of particle energy spectra, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 280 (1989), 103-112.
doi: 10.1016/0168-9002(89)91277-1. |
[33] |
M. Wright,
Ill-conditioning and computational error in interior methods for nonlinear programming, SIAM Journal on Optimization, 9 (1998), 84-111.
doi: 10.1137/S1052623497322279. |
[34] |
S. Wright,
Effects of finite-precision arithmetic on interior-point methods for nonlinear programming, SIAM Journal on Optimization, 12 (2001), 36-78.
doi: 10.1137/S1052623498347438. |
[35] |
S. J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, PA, 1996.
doi: 10.1137/1.9781611971453. |
[36] |
Y. Ye, O. Güler, R. A. Tapia and Y. Zhang,
A quadratically convergent $o(\sqrt{n}l)$-iteration algorithm for linear programming, Mathematical Programming, 59 (1993), 151-162.
doi: 10.1007/BF01581242. |
[37] |
Y. Ye, Interior Point Algorithms: Theory and Analysis, John Wiley & Sons, New Jersey, NJ, 1997.
doi: 10.1002/9781118032701. |
[38] |
Y. Zhang and R. A. Tapia, On the Convergence of Interior-Point Methods to the Center of Solution Set in Linear Programming, Technical Report TR91-30, Dept. Mathematical Sciences, Rice University, Houston, TX, 1991. Available from: https://www.researchgate.net/publication/235075603_On_the_Convergence_of_Interior-Point_Methods_to_the_Center_of_the_Solution_Set_in_Linear_Programming.
doi: 10.1007/BF01581087. |
[39] |
Y. Zhang,
On the convergence of a class of infeasible interior-point methods for the horizontal linear complementarity problem, SIAM Journal on Optimization, 4 (1994), 208-227.
doi: 10.1137/0804012. |
[40] |
Y. Zhang, Solving large-scale linear programs by interior-point methods under the matlab environment, Optimization Methods and Software, 10 (1998), 1–31.
doi: 10.1080/10556789808805699. |
[41] |
Y. Zhangsun, Unfolding Method Based on Entropy Theory for the Determination of Neutron Spectrum (in Chinese), Master's thesis, Northwest Institute of Nuclear Technology, Xi'an, Shanxi, P. R. China, 2015. Google Scholar |


m | Algo. | No. | Opt. | Time(s) | ||
10 | linprog-1 | 6 | 4.110e-07 | Y | 0.235 | |
linprog-2 | 5 | 1.421e-09 | Y | 0.243 | ||
fmincon | 39 | 13.863 | 1.286e-13 | Y | 1.392 | |
PDUP | 11 | 13.863 | 8.674e-09 | Y | 0.071 | |
20 | linprog-1 | 1001 | — | — | N | 0.285 |
linprog-2 | 5 | 1.101e-08 | Y | 0.266 | ||
fmincon | 15 | 27.726 | 1.528e-13 | Y | 0.763 | |
PDUP | 13 | 27.726 | 3.589e-11 | Y | 0.092 | |
50 | linprog-1 | 1001 | — | — | N | 0.820 |
linprog-2 | 6 | 6.305e-08 | Y | 0.241 | ||
fmincon | 14 | 69.315 | 2.336e-13 | Y | 1.021 | |
PDUP | 16 | 69.315 | 1.780e-10 | Y | 0.127 | |
100 | linprog-1 | 337 | — | — | N | 1.062 |
linprog-2 | 5 | 1.299e-07 | Y | 0.246 | ||
fmincon | 13 | 138.629 | 1.483e-13 | Y | 1.117 | |
PDUP | 18 | 138.629 | 1.096e-10 | Y | 0.390 | |
300 | linprog-1 | 1001 | — | — | N | 41.905 |
linprog-2 | 19 | — | — | N | 1.401 | |
fmincon | 156 | 415.888 | 3.855e-13 | N | 166.530 | |
PDUP | 22 | 415.888 | 2.379e-11 | Y | 3.600 | |
500 | linprog-1 | 676 | — | — | N | 149.613 |
linprog-2 | 8 | — | — | N | 3.548 | |
fmincon | 77 | 693.147 | 6.652e-13 | P | 385.377 | |
PDUP | 24 | 693.147 | 6.288e-11 | Y | 11.828 |
m | Algo. | No. | Opt. | Time(s) | ||
10 | linprog-1 | 6 | 4.110e-07 | Y | 0.235 | |
linprog-2 | 5 | 1.421e-09 | Y | 0.243 | ||
fmincon | 39 | 13.863 | 1.286e-13 | Y | 1.392 | |
PDUP | 11 | 13.863 | 8.674e-09 | Y | 0.071 | |
20 | linprog-1 | 1001 | — | — | N | 0.285 |
linprog-2 | 5 | 1.101e-08 | Y | 0.266 | ||
fmincon | 15 | 27.726 | 1.528e-13 | Y | 0.763 | |
PDUP | 13 | 27.726 | 3.589e-11 | Y | 0.092 | |
50 | linprog-1 | 1001 | — | — | N | 0.820 |
linprog-2 | 6 | 6.305e-08 | Y | 0.241 | ||
fmincon | 14 | 69.315 | 2.336e-13 | Y | 1.021 | |
PDUP | 16 | 69.315 | 1.780e-10 | Y | 0.127 | |
100 | linprog-1 | 337 | — | — | N | 1.062 |
linprog-2 | 5 | 1.299e-07 | Y | 0.246 | ||
fmincon | 13 | 138.629 | 1.483e-13 | Y | 1.117 | |
PDUP | 18 | 138.629 | 1.096e-10 | Y | 0.390 | |
300 | linprog-1 | 1001 | — | — | N | 41.905 |
linprog-2 | 19 | — | — | N | 1.401 | |
fmincon | 156 | 415.888 | 3.855e-13 | N | 166.530 | |
PDUP | 22 | 415.888 | 2.379e-11 | Y | 3.600 | |
500 | linprog-1 | 676 | — | — | N | 149.613 |
linprog-2 | 8 | — | — | N | 3.548 | |
fmincon | 77 | 693.147 | 6.652e-13 | P | 385.377 | |
PDUP | 24 | 693.147 | 6.288e-11 | Y | 11.828 |
[1] |
Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020404 |
[2] |
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021015 |
[3] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[4] |
Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293 |
[5] |
Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230 |
[6] |
Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333 |
[7] |
Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263 |
[8] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[9] |
Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319 |
[10] |
Bing Gao, Rui Gao. On fair entropy of the tent family. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021017 |
[11] |
Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075 |
[12] |
Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 |
[13] |
Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048 |
[14] |
Hanyu Gu, Hue Chi Lam, Yakov Zinder. Planning rolling stock maintenance: Optimization of train arrival dates at a maintenance center. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020177 |
[15] |
Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325 |
[16] |
Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240 |
[17] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020382 |
[18] |
François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221 |
[19] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003 |
[20] |
Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005 |
2019 Impact Factor: 1.366
Tools
Article outline
Figures and Tables
[Back to Top]