
-
Previous Article
Bundling and pricing decisions for bricks-and-clicks firms with consideration of network externality
- JIMO Home
- This Issue
-
Next Article
Preserving relational contract stability of fresh agricultural product supply chains
A novel Chebyshev-collocation spectral method for solving the transport equation
1. | Business School, Shandong Normal University, Jinan, 250014, P.R. China |
2. | School of Automation and Electrical Engineering, and Key Laboratory of complex Systems and Intellignet Computing, Linyi 276005, Shandong, P.R. China |
3. | Hubei Key Laboratory of Advanced Control and Intelligent, Automation of Complex Systems, and Engineering Research Center, of Intelligent Geodetection Technology Ministry of Education, China University of Geosciences, Wuhan, 430074, P.R. China |
In this paper, we employ an efficient numerical method to solve transport equations with given boundary and initial conditions. By the weighted-orthogonal Chebyshev polynomials, we design the corresponding basis functions for spatial variables, which guarantee the stiff matrix is sparse, for the spectral collocation methods. Combining with direct algebraic algorithms for the sparse discretized formula, we solve the equivalent scheme to get the numerical solutions with high accuracy. This collocation methods can be used to solve other kinds of models with limited computational costs, especially for the nonlinear partial differential equations. Some numerical results are listed to illustrate the high accuracy of this numerical method.
References:
[1] |
B. Bialecki,
Sinc-collection methods for two-point boundary value problems, Ima Journal of Numerical Analysis, 11 (1991), 357-375.
doi: 10.1093/imanum/11.3.357. |
[2] |
A. G. Buchan, C. C. Pain, M. D. Eaton, R. P. Smedley-Stevenson and A. J. H. Goddard,
Chebyshev spectral hexahedral wavelets on the sphere for angular discretisations of the boltzmann transport equation, Annals of Nuclear Energy, 35 (2008), 1098-1108.
doi: 10.1016/j.anucene.2007.08.021. |
[3] |
C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, New York, 1988.
doi: 10.1007/978-3-642-84108-8. |
[4] |
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics, 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.
doi: 10.1137/1.9780898719208. |
[5] |
J. D. Dockery,
Numerical solution of travelling waves for reaction-diffusion equations via the sinc-galerkin method, In Bowers K., Lund J. (eds) Computation and Control II. Progress in Systems and Control Theory, 11 (1991), 95-113.
|
[6] |
M. El-Gamel,
A comparison between the Sinc-Galerkin and the modified decomposition methods for solving two-point boundary-value problems, Journal of Computational Physics, 223 (2007), 369-383.
doi: 10.1016/j.jcp.2006.09.025. |
[7] |
P. Heidelberger and P. D. Welch,
A spectral method for confidence interval generation and run length control in simulations, Communications of the ACM, 24 (1981), 233-245.
doi: 10.1145/358598.358630. |
[8] |
A. Ishimaru,
Wave propagation and scattering in random media and rough surfaces, Proceedings of the IEEE, 79 (1991), 1359-1366.
|
[9] |
A. D. Kim and A. Ishimaru,
A chebyshev spectral method for radiative transfer equations applied to electromagnetic wave propagation and scattering in a discrete random medium, J. Comput. Phys, 152 (1999), 264-280.
doi: 10.1006/jcph.1999.6247. |
[10] |
V. B. Kisselev, L. Roberti and G. Perona,
An application of the finite element method to the solution of the radiative transfer equation, Journal of Quantitative Spectroscopy and Radiative Transfer, 51 (1994), 603-614.
doi: 10.1016/0022-4073(94)90114-7. |
[11] |
A. Lundbladh, D. S. Henningson and A. V. Johansson, An Efficient Spectral Integration Method for the Solution of the Navier-Stokes Equations, Aeronautical Research Institute of Sweden Bromma, 1992. |
[12] |
X. J. Li and C. J. Xu,
A space-time spectral method for the time fractional diffusion equation, SIAM Journal on Numerical Analysis, 47 (2009), 2108-2131.
doi: 10.1137/080718942. |
[13] |
A. M. Mao, L. J. Yang, A. X. Qian and S. X. Luan,
Existence and concentration of solutions of schrödinger-poisson system, Applied Mathematics Letters, 68 (2017), 8-12.
doi: 10.1016/j.aml.2016.12.014. |
[14] |
S. R. Merton, C. C. Pain, R. P. Smedley-Stevenson, A. G. Buchan and M. D. Eaton,
Optimal discontinuous finite element methods for the boltzmann transport equation with arbitrary discretisation in angle, Annals of Nuclear Energy, 35 (2008), 1741-1759.
doi: 10.1016/j.anucene.2008.01.023. |
[15] |
H. F. Niu, D. P. Yang and J. W. Zhou,
Numerical analysis of an optimal control problem governed by the stationary navier-stokes equations with global velocity-constrained, Communications in Computational Physics, 24 (2018), 1477-1502.
doi: 10.4208/cicp.oa-2017-0045. |
[16] |
B. Wang, A. Iserles and X. Y. Wu,
Arbitrary-order trigonometric fourier collocation methods for multi-frequency oscillatory systems, Foundations of Computational Mathematics, 16 (2016), 151-181.
doi: 10.1007/s10208-014-9241-9. |
[17] |
B. Wang, F. W. Meng and Y. L. Fang,
Efficient implementation of rkn-type fourier collocation methods for second-order differential equations, Applied Numerical Mathematics, 119 (2017), 164-178.
doi: 10.1016/j.apnum.2017.04.008. |
[18] |
B. Wang, X. Y. Wu and F. W. Meng,
Trigonometric collocation methods based on lagrange basis polynomials for multi-frequency oscillatory second-order differential equations, Journal of Computational and Applied Mathematics, 313 (2017), 185-201.
doi: 10.1016/j.cam.2016.09.017. |
[19] |
B. Wang, H. L. Yang and F. W. Meng,
Sixth-order symplectic and symmetric explicit erkn schemes for solving multi-frequency oscillatory nonlinear hamiltonian equations, Calcolo, 54 (2017), 117-140.
doi: 10.1007/s10092-016-0179-y. |
[20] |
B. Wang,
Triangular splitting implementation of rkn-type fourier collocation methods for second-order differential equations, Mathematical Methods in the Applied Sciences, 41 (2018), 1998-2011.
doi: 10.1002/mma.4727. |
[21] |
X. Y. Wu and B. Wang, Exponential fourier collocation methods for solving first-order differential equations, In Recent Developments in Structure-Preserving Algorithms for Oscillatory Differential Equations, Springer, Singapore, (2018), 55–84. |
[22] |
J. W. Zhou and D. P. Yang,
An improved a posteriori error estimate for the galerkin spectral method in one dimension, Computers & Mathematics with Applications, 61 (2011), 334-340.
doi: 10.1016/j.camwa.2010.11.008. |
[23] |
J. W. Zhou, J. Zhang and X. Q. Xing,
Galerkin spectral approximations for optimal control problems governed by the fourth order equation with an integral constraint on state, Computers & Mathematics with Applications, 72 (2016), 2549-2561.
doi: 10.1016/j.camwa.2016.08.009. |
[24] |
J. W. Zhou, J. Zhang, H. T. Xie and Y. Yang,
Error estimates of spectral element methods with generalized jacobi polynomials on an interval, Applied Mathematics Letters, 74 (2017), 199-206.
doi: 10.1016/j.aml.2017.03.010. |
[25] |
J. W. Zhou, Z. W. Jiang, H. T. Xie and H. F. Niu, The error estimates of spectral methods for 1-dimension singularly perturbed problem, Applied Mathematics Letters, 100 (2020), 106001, 8 pp.
doi: 10.1016/j.aml.2019.106001. |
show all references
References:
[1] |
B. Bialecki,
Sinc-collection methods for two-point boundary value problems, Ima Journal of Numerical Analysis, 11 (1991), 357-375.
doi: 10.1093/imanum/11.3.357. |
[2] |
A. G. Buchan, C. C. Pain, M. D. Eaton, R. P. Smedley-Stevenson and A. J. H. Goddard,
Chebyshev spectral hexahedral wavelets on the sphere for angular discretisations of the boltzmann transport equation, Annals of Nuclear Energy, 35 (2008), 1098-1108.
doi: 10.1016/j.anucene.2007.08.021. |
[3] |
C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, New York, 1988.
doi: 10.1007/978-3-642-84108-8. |
[4] |
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics, 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.
doi: 10.1137/1.9780898719208. |
[5] |
J. D. Dockery,
Numerical solution of travelling waves for reaction-diffusion equations via the sinc-galerkin method, In Bowers K., Lund J. (eds) Computation and Control II. Progress in Systems and Control Theory, 11 (1991), 95-113.
|
[6] |
M. El-Gamel,
A comparison between the Sinc-Galerkin and the modified decomposition methods for solving two-point boundary-value problems, Journal of Computational Physics, 223 (2007), 369-383.
doi: 10.1016/j.jcp.2006.09.025. |
[7] |
P. Heidelberger and P. D. Welch,
A spectral method for confidence interval generation and run length control in simulations, Communications of the ACM, 24 (1981), 233-245.
doi: 10.1145/358598.358630. |
[8] |
A. Ishimaru,
Wave propagation and scattering in random media and rough surfaces, Proceedings of the IEEE, 79 (1991), 1359-1366.
|
[9] |
A. D. Kim and A. Ishimaru,
A chebyshev spectral method for radiative transfer equations applied to electromagnetic wave propagation and scattering in a discrete random medium, J. Comput. Phys, 152 (1999), 264-280.
doi: 10.1006/jcph.1999.6247. |
[10] |
V. B. Kisselev, L. Roberti and G. Perona,
An application of the finite element method to the solution of the radiative transfer equation, Journal of Quantitative Spectroscopy and Radiative Transfer, 51 (1994), 603-614.
doi: 10.1016/0022-4073(94)90114-7. |
[11] |
A. Lundbladh, D. S. Henningson and A. V. Johansson, An Efficient Spectral Integration Method for the Solution of the Navier-Stokes Equations, Aeronautical Research Institute of Sweden Bromma, 1992. |
[12] |
X. J. Li and C. J. Xu,
A space-time spectral method for the time fractional diffusion equation, SIAM Journal on Numerical Analysis, 47 (2009), 2108-2131.
doi: 10.1137/080718942. |
[13] |
A. M. Mao, L. J. Yang, A. X. Qian and S. X. Luan,
Existence and concentration of solutions of schrödinger-poisson system, Applied Mathematics Letters, 68 (2017), 8-12.
doi: 10.1016/j.aml.2016.12.014. |
[14] |
S. R. Merton, C. C. Pain, R. P. Smedley-Stevenson, A. G. Buchan and M. D. Eaton,
Optimal discontinuous finite element methods for the boltzmann transport equation with arbitrary discretisation in angle, Annals of Nuclear Energy, 35 (2008), 1741-1759.
doi: 10.1016/j.anucene.2008.01.023. |
[15] |
H. F. Niu, D. P. Yang and J. W. Zhou,
Numerical analysis of an optimal control problem governed by the stationary navier-stokes equations with global velocity-constrained, Communications in Computational Physics, 24 (2018), 1477-1502.
doi: 10.4208/cicp.oa-2017-0045. |
[16] |
B. Wang, A. Iserles and X. Y. Wu,
Arbitrary-order trigonometric fourier collocation methods for multi-frequency oscillatory systems, Foundations of Computational Mathematics, 16 (2016), 151-181.
doi: 10.1007/s10208-014-9241-9. |
[17] |
B. Wang, F. W. Meng and Y. L. Fang,
Efficient implementation of rkn-type fourier collocation methods for second-order differential equations, Applied Numerical Mathematics, 119 (2017), 164-178.
doi: 10.1016/j.apnum.2017.04.008. |
[18] |
B. Wang, X. Y. Wu and F. W. Meng,
Trigonometric collocation methods based on lagrange basis polynomials for multi-frequency oscillatory second-order differential equations, Journal of Computational and Applied Mathematics, 313 (2017), 185-201.
doi: 10.1016/j.cam.2016.09.017. |
[19] |
B. Wang, H. L. Yang and F. W. Meng,
Sixth-order symplectic and symmetric explicit erkn schemes for solving multi-frequency oscillatory nonlinear hamiltonian equations, Calcolo, 54 (2017), 117-140.
doi: 10.1007/s10092-016-0179-y. |
[20] |
B. Wang,
Triangular splitting implementation of rkn-type fourier collocation methods for second-order differential equations, Mathematical Methods in the Applied Sciences, 41 (2018), 1998-2011.
doi: 10.1002/mma.4727. |
[21] |
X. Y. Wu and B. Wang, Exponential fourier collocation methods for solving first-order differential equations, In Recent Developments in Structure-Preserving Algorithms for Oscillatory Differential Equations, Springer, Singapore, (2018), 55–84. |
[22] |
J. W. Zhou and D. P. Yang,
An improved a posteriori error estimate for the galerkin spectral method in one dimension, Computers & Mathematics with Applications, 61 (2011), 334-340.
doi: 10.1016/j.camwa.2010.11.008. |
[23] |
J. W. Zhou, J. Zhang and X. Q. Xing,
Galerkin spectral approximations for optimal control problems governed by the fourth order equation with an integral constraint on state, Computers & Mathematics with Applications, 72 (2016), 2549-2561.
doi: 10.1016/j.camwa.2016.08.009. |
[24] |
J. W. Zhou, J. Zhang, H. T. Xie and Y. Yang,
Error estimates of spectral element methods with generalized jacobi polynomials on an interval, Applied Mathematics Letters, 74 (2017), 199-206.
doi: 10.1016/j.aml.2017.03.010. |
[25] |
J. W. Zhou, Z. W. Jiang, H. T. Xie and H. F. Niu, The error estimates of spectral methods for 1-dimension singularly perturbed problem, Applied Mathematics Letters, 100 (2020), 106001, 8 pp.
doi: 10.1016/j.aml.2019.106001. |
N | CCSM | FDM |
2.58952e-4 | 7.92233e-1 | |
3.51652e-6 | 5.35228e-1 | |
2.93379e-7 | 3.71949e-2 | |
4.67534e-9 | 2.68015e-2 | |
2.5433e-2 | 9.58506e-2 |
N | CCSM | FDM |
2.58952e-4 | 7.92233e-1 | |
3.51652e-6 | 5.35228e-1 | |
2.93379e-7 | 3.71949e-2 | |
4.67534e-9 | 2.68015e-2 | |
2.5433e-2 | 9.58506e-2 |
N | CCSM | FDM |
2.99237e-4 | 8.00453e-1 | |
7.33715e-7 | 5.56804e-1 | |
1.66371e-9 | 4.01949e-2 | |
9.97109e-12 | 3.08050e-2 | |
5.74238e-14 | 1.00513e-2 |
N | CCSM | FDM |
2.99237e-4 | 8.00453e-1 | |
7.33715e-7 | 5.56804e-1 | |
1.66371e-9 | 4.01949e-2 | |
9.97109e-12 | 3.08050e-2 | |
5.74238e-14 | 1.00513e-2 |
[1] |
Yones Esmaeelzade Aghdam, Hamid Safdari, Yaqub Azari, Hossein Jafari, Dumitru Baleanu. Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2025-2039. doi: 10.3934/dcdss.2020402 |
[2] |
Guo Ben-Yu, Wang Zhong-Qing. Modified Chebyshev rational spectral method for the whole line. Conference Publications, 2003, 2003 (Special) : 365-374. doi: 10.3934/proc.2003.2003.365 |
[3] |
Jingwei Hu, Jie Shen, Yingwei Wang. A Petrov-Galerkin spectral method for the inelastic Boltzmann equation using mapped Chebyshev functions. Kinetic and Related Models, 2020, 13 (4) : 677-702. doi: 10.3934/krm.2020023 |
[4] |
Can Huang, Zhimin Zhang. The spectral collocation method for stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 667-679. doi: 10.3934/dcdsb.2013.18.667 |
[5] |
Yuling Guo, Zhongqing Wang. A multi-domain Chebyshev collocation method for nonlinear fractional delay differential equations. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022052 |
[6] |
Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299 |
[7] |
Jie Tang, Ziqing Xie, Zhimin Zhang. The long time behavior of a spectral collocation method for delay differential equations of pantograph type. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 797-819. doi: 10.3934/dcdsb.2013.18.797 |
[8] |
Ben-Yu Guo, Zhong-Qing Wang. A spectral collocation method for solving initial value problems of first order ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1029-1054. doi: 10.3934/dcdsb.2010.14.1029 |
[9] |
Yin Yang, Sujuan Kang, Vasiliy I. Vasil'ev. The Jacobi spectral collocation method for fractional integro-differential equations with non-smooth solutions. Electronic Research Archive, 2020, 28 (3) : 1161-1189. doi: 10.3934/era.2020064 |
[10] |
Yanmei Sun, Yakui Huang. An alternate gradient method for optimization problems with orthogonality constraints. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 665-676. doi: 10.3934/naco.2021003 |
[11] |
Roman Romanov. Estimates of solutions of linear neutron transport equation at large time and spectral singularities. Kinetic and Related Models, 2012, 5 (1) : 113-128. doi: 10.3934/krm.2012.5.113 |
[12] |
Takeshi Saito, Kazuyuki Yagasaki. Chebyshev spectral methods for computing center manifolds. Journal of Computational Dynamics, 2021, 8 (2) : 165-181. doi: 10.3934/jcd.2021008 |
[13] |
Ömer Oruç, Alaattin Esen, Fatih Bulut. A unified finite difference Chebyshev wavelet method for numerically solving time fractional Burgers' equation. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 533-542. doi: 10.3934/dcdss.2019035 |
[14] |
Igor E. Pritsker and Richard S. Varga. Weighted polynomial approximation in the complex plane. Electronic Research Announcements, 1997, 3: 38-44. |
[15] |
Torsten Keßler, Sergej Rjasanow. Fully conservative spectral Galerkin–Petrov method for the inhomogeneous Boltzmann equation. Kinetic and Related Models, 2019, 12 (3) : 507-549. doi: 10.3934/krm.2019021 |
[16] |
Giulia Bertaglia, Liu Liu, Lorenzo Pareschi, Xueyu Zhu. Bi-fidelity stochastic collocation methods for epidemic transport models with uncertainties. Networks and Heterogeneous Media, 2022, 17 (3) : 401-425. doi: 10.3934/nhm.2022013 |
[17] |
Jiantao Jiang, Jing An, Jianwei Zhou. A novel numerical method based on a high order polynomial approximation of the fourth order Steklov equation and its eigenvalue problems. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022066 |
[18] |
Xu Yang, François Golse, Zhongyi Huang, Shi Jin. Numerical study of a domain decomposition method for a two-scale linear transport equation. Networks and Heterogeneous Media, 2006, 1 (1) : 143-166. doi: 10.3934/nhm.2006.1.143 |
[19] |
Shi Jin, Xu Yang, Guangwei Yuan. A domain decomposition method for a two-scale transport equation with energy flux conserved at the interface. Kinetic and Related Models, 2008, 1 (1) : 65-84. doi: 10.3934/krm.2008.1.65 |
[20] |
Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks and Heterogeneous Media, 2013, 8 (2) : 465-479. doi: 10.3934/nhm.2013.8.465 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]