# American Institute of Mathematical Sciences

• Previous Article
Solution method for discrete double obstacle problems based on a power penalty approach
• JIMO Home
• This Issue
• Next Article
Optimal reinsurance and investment strategies for an insurer and a reinsurer under Hestons SV model: HARA utility and Legendre transform
doi: 10.3934/jimo.2020086

## Approach to the consistency and consensus of Pythagorean fuzzy preference relations based on their partial orders in group decision making

 1 School of Mathematics and Statistics, Linyi University, Linyi, 276005, China 2 Business School, Sichuan University, Chengdu, 610064, China

* Corresponding author: Ze Shui Xu and Zhen Ming Ma

Received  October 2019 Revised  January 2020 Published  April 2020

Fund Project: The first author is supported by NSF of Shandong Province grant: ZR2017MG027

Although intuitionistic fuzzy preference relations have become powerful techniques to express the decision makers' preference information over alternatives or criteria in group decision making, some limitations of them are pointed out in this paper, then they are overcame by developed the group decision making with Pythagorean fuzzy preference relations (PFPRs). Specially, we provide a partial order on the set of all the PFPRs, based on which, a deviation measure is defined. Then, we check and reach the acceptably multiplicative consistency and consensus of PFPRs associated with the partial order and mathematical programming. Concretely, acceptably multiplicative consistent PRPRs are defined by the deviation between a given PFPR and a multiplicative consistent PFPR constructed by a normal Pythagorean fuzzy priority vector. Then acceptable consensus of a collection of PFPRs is defined by the deviation of each PFPR and the aggregated result from symmetrical Pythagorean fuzzy aggregation operators. Based on which, a method which can simultaneously modify the unacceptable consistency and consensus of PFPRs in a stepwise way is provided. Particularly, we also prove that the collective PFPR obtained by aggregating several individual acceptably consistent PFPRs with various symmetric aggregation operators is still acceptably consistent. Then, a procedure is provided to solve group decision making with PRPRs and a numerical example is given to illustrate the effectiveness of our method.

Citation: Zhen Ming Ma, Ze Shui Xu, Wei Yang. Approach to the consistency and consensus of Pythagorean fuzzy preference relations based on their partial orders in group decision making. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020086
##### References:

show all references

##### References:
The modified PFPRs ${P}^{(h)}$ and their corresponding multiplicatively consistent PFPRs $\widetilde{P}^{(h)}, h = 0, 1, 2$
 ${P}^{(0)}$ $(0.7071, 0.7071)$ $(0.469, 0.8216)$ $(0.7969, 0.3674)$ $(0.9301, 0.2646)$ $(0.8216, 0.469)$ $(0.7071, 0.7071)$ $(0.8689, 0.2121)$ $(0.9618, 0.1449)$ $(0.3674, 0.7969)$ $(0.2121, 0.8689)$ $(0.7071, 0.7071)$ $(0.7583, 0.3873)$ $(0.2646, 0.9301)$ $(0.1449, 0.9618)$ $(0.3873, 0.7583)$ $(0.7071, 0.7071)$ ${P}^{(1)}$ $(0.7071, 0.7071)$ $(0.469, 0.8216)$ $\underline{(0.8559, 0.3462)}$ $(0.9301, 0.2646)$ $(0.8216, 0.469)$ $(0.7071, 0.7071)$ $(0.8689, 0.2121)$ $(0.9618, 0.1449)$ $\underline{(0.3462, 0.8559)}$ $(0.2121, 0.8689)$ $(0.7071, 0.7071)$ $(0.7583, 0.3873)$ $(0.2646, 0.9301)$ $(0.1449, 0.9618)$ $(0.3873, 0.7583)$ $(0.7071, 0.7071)$ ${P}^{(2)}$ $(0.7071, 0.7071)$ $(0.469, 0.8216)$ $(0.8559, 0.3462)$ $(0.9301, 0.2646)$ $(0.8216, 0.469)$ $(0.7071, 0.7071)$ $\underline{(0.9178, 0.2121)}$ $(0.9618, 0.1449)$ $(0.3462, 0.8559)$ $\underline{(0.2121, 0.9178)}$ $(0.7071, 0.7071)$ $(0.7583, 0.3873)$ $(0.2646, 0.9301)$ $(0.1449, 0.9618)$ $(0.3873, 0.7583)$ $(0.7071, 0.7071)$ $\widetilde{P}^{(2)}$ $(0.7071, 0.7071)$ $(0.469, 0.8209)$ $(0.856, 0.3462)$ $(0.9451, 0.1952)$ $(0.8209, 0.469)$ $(0.7071, 0.7071)$ $(0.9179, 0.2121)$ $(0.9627, 0.1136)$ $(0.3462, 0.856)$ $(0.2121, 0.9179)$ $(0.7071, 0.7071)$ $(0.7583, 0.3873)$ $(0.1952, 0.9451)$ $(0.1136, 0.9627)$ $(0.3873, 0.7583)$ $(0.7071, 0.7071)$ $\widetilde{P}^{(1)}$ $(0.7071, 0.7071)$ $(0.4691, 0.8209)$ $(0.8561, 0.3462)$ $(0.9452, 0.1952)$ $(0.8209, 0.4691)$ $(0.7071, 0.7071)$ $(0.9179, 0.2121)$ $(0.9627, 0.1136)$ $(0.3462, 0.8561)$ $(0.2121, 0.9179)$ $(0.7071, 0.7071)$ $(0.7583, 0.3873)$ $(0.1952, 0.9452)$ $(0.1136, 0.9627)$ $(0.3873, 0.7583)$ $(0.7071, 0.7071)$ $\widetilde{P}^{(0)}$ $(0.7071, 0.7071)$ $(0.47, 0.8206)$ $(0.8587, 0.3443)$ $(0.9452, 0.1922)$ $(0.8206, 0.47)$ $(0.7071, 0.7071)$ $(0.9192, 0.2111)$ $(0.9628, 0.1122)$ $(0.3443, 0.8587)$ $(0.2111, 0.9192)$ $(0.7071, 0.7071)$ $(0.7593, 0.3851)$ $(0.1922, 0.9452)$ $(0.1122, 0.9628)$ $(0.3851, 0.7593)$ $(0.7071, 0.7071)$
 ${P}^{(0)}$ $(0.7071, 0.7071)$ $(0.469, 0.8216)$ $(0.7969, 0.3674)$ $(0.9301, 0.2646)$ $(0.8216, 0.469)$ $(0.7071, 0.7071)$ $(0.8689, 0.2121)$ $(0.9618, 0.1449)$ $(0.3674, 0.7969)$ $(0.2121, 0.8689)$ $(0.7071, 0.7071)$ $(0.7583, 0.3873)$ $(0.2646, 0.9301)$ $(0.1449, 0.9618)$ $(0.3873, 0.7583)$ $(0.7071, 0.7071)$ ${P}^{(1)}$ $(0.7071, 0.7071)$ $(0.469, 0.8216)$ $\underline{(0.8559, 0.3462)}$ $(0.9301, 0.2646)$ $(0.8216, 0.469)$ $(0.7071, 0.7071)$ $(0.8689, 0.2121)$ $(0.9618, 0.1449)$ $\underline{(0.3462, 0.8559)}$ $(0.2121, 0.8689)$ $(0.7071, 0.7071)$ $(0.7583, 0.3873)$ $(0.2646, 0.9301)$ $(0.1449, 0.9618)$ $(0.3873, 0.7583)$ $(0.7071, 0.7071)$ ${P}^{(2)}$ $(0.7071, 0.7071)$ $(0.469, 0.8216)$ $(0.8559, 0.3462)$ $(0.9301, 0.2646)$ $(0.8216, 0.469)$ $(0.7071, 0.7071)$ $\underline{(0.9178, 0.2121)}$ $(0.9618, 0.1449)$ $(0.3462, 0.8559)$ $\underline{(0.2121, 0.9178)}$ $(0.7071, 0.7071)$ $(0.7583, 0.3873)$ $(0.2646, 0.9301)$ $(0.1449, 0.9618)$ $(0.3873, 0.7583)$ $(0.7071, 0.7071)$ $\widetilde{P}^{(2)}$ $(0.7071, 0.7071)$ $(0.469, 0.8209)$ $(0.856, 0.3462)$ $(0.9451, 0.1952)$ $(0.8209, 0.469)$ $(0.7071, 0.7071)$ $(0.9179, 0.2121)$ $(0.9627, 0.1136)$ $(0.3462, 0.856)$ $(0.2121, 0.9179)$ $(0.7071, 0.7071)$ $(0.7583, 0.3873)$ $(0.1952, 0.9451)$ $(0.1136, 0.9627)$ $(0.3873, 0.7583)$ $(0.7071, 0.7071)$ $\widetilde{P}^{(1)}$ $(0.7071, 0.7071)$ $(0.4691, 0.8209)$ $(0.8561, 0.3462)$ $(0.9452, 0.1952)$ $(0.8209, 0.4691)$ $(0.7071, 0.7071)$ $(0.9179, 0.2121)$ $(0.9627, 0.1136)$ $(0.3462, 0.8561)$ $(0.2121, 0.9179)$ $(0.7071, 0.7071)$ $(0.7583, 0.3873)$ $(0.1952, 0.9452)$ $(0.1136, 0.9627)$ $(0.3873, 0.7583)$ $(0.7071, 0.7071)$ $\widetilde{P}^{(0)}$ $(0.7071, 0.7071)$ $(0.47, 0.8206)$ $(0.8587, 0.3443)$ $(0.9452, 0.1922)$ $(0.8206, 0.47)$ $(0.7071, 0.7071)$ $(0.9192, 0.2111)$ $(0.9628, 0.1122)$ $(0.3443, 0.8587)$ $(0.2111, 0.9192)$ $(0.7071, 0.7071)$ $(0.7593, 0.3851)$ $(0.1922, 0.9452)$ $(0.1122, 0.9628)$ $(0.3851, 0.7593)$ $(0.7071, 0.7071)$
Individual preference information from three decision makers
 $P^{(1)}$ $(0.7071, 0.7071)$ $(0.9487, 0.1)$ $(0.8367, 0.3162)$ $(0.1, 0.9487)$ $(0.7071, 0.7071)$ $(0.7746, 0.4472)$ $(0.3162, 0.8367)$ $(0.4472, 0.7746)$ $(0.7071, 0.7071)$ $P^{(2)}$ $(0.7071, 0.7071)$ $(0.7746, 0.3162)$ $(0.8367, 0.4472)$ $(0.3162, 0.7746)$ $(0.7071, 0.7071)$ $(0.7071, 0.3162)$ $(0.4472, 0.8367)$ $(0.3162, 0.7071)$ $(0.7071, 0.7071)$ $P^{(3)}$ $(0.7071, 0.7071)$ $(0.7746, 0.4472)$ $(0.8944, 0.3162)$ $(0.4472, 0.7746)$ $(0.7071, 0.7071)$ $(0.7746, 0.3162)$ $(0.3162, 0.8944)$ $(0.3162, 0.7746)$ $(0.7071, 0.7071)$
 $P^{(1)}$ $(0.7071, 0.7071)$ $(0.9487, 0.1)$ $(0.8367, 0.3162)$ $(0.1, 0.9487)$ $(0.7071, 0.7071)$ $(0.7746, 0.4472)$ $(0.3162, 0.8367)$ $(0.4472, 0.7746)$ $(0.7071, 0.7071)$ $P^{(2)}$ $(0.7071, 0.7071)$ $(0.7746, 0.3162)$ $(0.8367, 0.4472)$ $(0.3162, 0.7746)$ $(0.7071, 0.7071)$ $(0.7071, 0.3162)$ $(0.4472, 0.8367)$ $(0.3162, 0.7071)$ $(0.7071, 0.7071)$ $P^{(3)}$ $(0.7071, 0.7071)$ $(0.7746, 0.4472)$ $(0.8944, 0.3162)$ $(0.4472, 0.7746)$ $(0.7071, 0.7071)$ $(0.7746, 0.3162)$ $(0.3162, 0.8944)$ $(0.3162, 0.7746)$ $(0.7071, 0.7071)$
Iterative process of the proposed method for the acceptable concensus
 $h$ $(D(P^{(1h)}, P_{Agg}^{(h)}), D(P^{(2h)}, P_{Agg}^{(h)}), D(P^{(3h)}, P_{Agg}^{(h)}))$ $l_0$ $i_0, j_0$ 0 $(0.3589, 0.2902, 0.2578)$ 1 $(1, 2)$ 1 $(0.271, 0.2774, 0.2244)$ 1 $(2, 3)$ 2 $(0.2205, 0.2606, 0.2291)$ 2 $(1, 3)$ 3 $(0.2175, 0.2288, 0.2203)$ 2 $(2, 3)$ 4 $(0.2037, 0.1762, 0.1986)$ 2 $(1, 2)$ 5 $(0.1943, 0.1377, 0.1875)$ 1 $(1, 3)$ 6 $(0.1493, 0.1540, 0.1598)$ 3 $(1, 2)$ 7 $(0.1188, 0.1355, 0.1076)$ 2 $(1, 3)$ 8 $(0.1017, 0.0787, 0.0814)$ 1 $(1, 2)$ 9 $(0.0780, 0.0628, 0.0757)$
 $h$ $(D(P^{(1h)}, P_{Agg}^{(h)}), D(P^{(2h)}, P_{Agg}^{(h)}), D(P^{(3h)}, P_{Agg}^{(h)}))$ $l_0$ $i_0, j_0$ 0 $(0.3589, 0.2902, 0.2578)$ 1 $(1, 2)$ 1 $(0.271, 0.2774, 0.2244)$ 1 $(2, 3)$ 2 $(0.2205, 0.2606, 0.2291)$ 2 $(1, 3)$ 3 $(0.2175, 0.2288, 0.2203)$ 2 $(2, 3)$ 4 $(0.2037, 0.1762, 0.1986)$ 2 $(1, 2)$ 5 $(0.1943, 0.1377, 0.1875)$ 1 $(1, 3)$ 6 $(0.1493, 0.1540, 0.1598)$ 3 $(1, 2)$ 7 $(0.1188, 0.1355, 0.1076)$ 2 $(1, 3)$ 8 $(0.1017, 0.0787, 0.0814)$ 1 $(1, 2)$ 9 $(0.0780, 0.0628, 0.0757)$
Individual preference information from three decision makers
 $P^{(1)}$ $(0.707, 0.707)$ $(0.707, 0.447)$ $(0.837, 0.316)$ $(0.707, 0.548)$ $(0.447, 0.707)$ $(0.707, 0.707)$ $(0.775, 0.447)$ $(0.548, 0.775)$ $(0.316, 0.837)$ $(0.447, 0.775)$ $(0.707, 0.707)$ $(0.548, 0.775)$ $(0.548, 0.707)$ $(0.775, 0.548)$ $(0.775, 0.548)$ $(0.707, 0.707)$ $P^{(2)}$ $(0.707, 0.707)$ $(0.775, 0.316)$ $(0.894, 0.447)$ $(0.775, 0.548)$ $(0.316, 0.775)$ $(0.707, 0.707)$ $(0.707, 0.316)$ $(0.548, 0.837)$ $(0.447, 0.894)$ $(0.316, 0.707)$ $(0.707, 0.707)$ $(0.632, 0.775)$ $(0.548, 0.775)$ $(0.837, 0.548)$ $(0.775, 0.632)$ $(0.707, 0.707)$ $P^{(3)}$ $(0.707, 0.707)$ $(0.775, 0.447)$ $(0.894, 0.316)$ $(0.837, 0.447)$ $(0.447, 0.775)$ $(0.707, 0.707)$ $(0.775, 0.316)$ $(0.447, 0.837)$ $(0.316, 0.894)$ $(0.316, 0.775)$ $(0.707, 0.707)$ $(0.447, 0.548)$ $(0.447, 0.837)$ $(0.837, 0.447)$ $(0.548, 0.447)$ $(0.707, 0.707)$
 $P^{(1)}$ $(0.707, 0.707)$ $(0.707, 0.447)$ $(0.837, 0.316)$ $(0.707, 0.548)$ $(0.447, 0.707)$ $(0.707, 0.707)$ $(0.775, 0.447)$ $(0.548, 0.775)$ $(0.316, 0.837)$ $(0.447, 0.775)$ $(0.707, 0.707)$ $(0.548, 0.775)$ $(0.548, 0.707)$ $(0.775, 0.548)$ $(0.775, 0.548)$ $(0.707, 0.707)$ $P^{(2)}$ $(0.707, 0.707)$ $(0.775, 0.316)$ $(0.894, 0.447)$ $(0.775, 0.548)$ $(0.316, 0.775)$ $(0.707, 0.707)$ $(0.707, 0.316)$ $(0.548, 0.837)$ $(0.447, 0.894)$ $(0.316, 0.707)$ $(0.707, 0.707)$ $(0.632, 0.775)$ $(0.548, 0.775)$ $(0.837, 0.548)$ $(0.775, 0.632)$ $(0.707, 0.707)$ $P^{(3)}$ $(0.707, 0.707)$ $(0.775, 0.447)$ $(0.894, 0.316)$ $(0.837, 0.447)$ $(0.447, 0.775)$ $(0.707, 0.707)$ $(0.775, 0.316)$ $(0.447, 0.837)$ $(0.316, 0.894)$ $(0.316, 0.775)$ $(0.707, 0.707)$ $(0.447, 0.548)$ $(0.447, 0.837)$ $(0.837, 0.447)$ $(0.548, 0.447)$ $(0.707, 0.707)$
Modified individual preference information from three decision makers
 $P^{(1, 44, 0)}$ $(0.707, 0.707)$ $(0.767, 0.341)$ $(0.89, 0.149)$ $(0.88, 0.136)$ $(0.341, 0.767)$ $(0.707, 0.707)$ $(0.769, 0.316)$ $(0.748, 0.271)$ $(0.149, 0.89)$ $(0.316, 0.769)$ $(0.707, 0.707)$ $(0.626, 0.549)$ $(0.136, 0.88)$ $(0.271, 0.748)$ $(0.549, 0.626)$ $(0.707, 0.707)$ $P^{(2, 44, 0)}$ $(0.707, 0.707)$ $(0.775, 0.316)$ $(0.894, 0.154)$ $(0.883, 0.128)$ $(0.316, 0.775)$ $(0.707, 0.707)$ $(0.772, 0.322)$ $(0.76, 0.271)$ $(0.154, 0.894)$ $(0.322, 0.772)$ $(0.707, 0.707)$ $(0.624, 0.549)$ $(0.128, 0.883)$ $(0.271, 0.76)$ $(0.549, 0.624)$ $(0.707, 0.707)$ $P^{(3, 44, 0)}$ $(0.707, 0.707)$ $(0.764, 0.327)$ $(0.894, 0.155)$ $(0.874, 0.13)$ $(0.327, 0.764)$ $(0.707, 0.707)$ $(0.775, 0.316)$ $(0.756, 0.274)$ $(0.155, 0.894)$ $(0.316, 0.775)$ $(0.707, 0.707)$ $(0.628, 0.548)$ $(0.13, 0.874)$ $(0.274, 0.756)$ $(0.548, 0.628)$ $(0.707, 0.707)$ $\widetilde{N}^{(44)}$ $(0.707, 0.707)$ $(0.75, 0.316)$ $(0.894, 0.149)$ $(0.883, 0.128)$ $(0.316, 0.775)$ $(0.707, 0.707)$ $(0.775, 0.316)$ $(0.76, 0.271)$ $(0.149, 0.894)$ $(0.316, 0.775)$ $(0.707, 0.707)$ $(0.628, 0.548)$ $(0.128, 0.883)$ $(0.271, 0.76)$ $(0.548, 0.628)$ $(0.707, 0.707)$ $P^{(44, 0)}$ $(0.707, 0.707)$ $(0.769, 0.328)$ $(0.893, 0.153)$ $(0.879, 0.131)$ $(0.328, 0.769)$ $(0.707, 0.707)$ $(0.772, 0.318)$ $(0.755, 0.272)$ $(0.153, 0.893)$ $(0.318, 0.772)$ $(0.707, 0.707)$ $(0.626, 0.549)$ $(0.131, 0.879)$ $(0.272, 0.755)$ $(0.549, 0.626)$ $(0.707, 0.707)$
 $P^{(1, 44, 0)}$ $(0.707, 0.707)$ $(0.767, 0.341)$ $(0.89, 0.149)$ $(0.88, 0.136)$ $(0.341, 0.767)$ $(0.707, 0.707)$ $(0.769, 0.316)$ $(0.748, 0.271)$ $(0.149, 0.89)$ $(0.316, 0.769)$ $(0.707, 0.707)$ $(0.626, 0.549)$ $(0.136, 0.88)$ $(0.271, 0.748)$ $(0.549, 0.626)$ $(0.707, 0.707)$ $P^{(2, 44, 0)}$ $(0.707, 0.707)$ $(0.775, 0.316)$ $(0.894, 0.154)$ $(0.883, 0.128)$ $(0.316, 0.775)$ $(0.707, 0.707)$ $(0.772, 0.322)$ $(0.76, 0.271)$ $(0.154, 0.894)$ $(0.322, 0.772)$ $(0.707, 0.707)$ $(0.624, 0.549)$ $(0.128, 0.883)$ $(0.271, 0.76)$ $(0.549, 0.624)$ $(0.707, 0.707)$ $P^{(3, 44, 0)}$ $(0.707, 0.707)$ $(0.764, 0.327)$ $(0.894, 0.155)$ $(0.874, 0.13)$ $(0.327, 0.764)$ $(0.707, 0.707)$ $(0.775, 0.316)$ $(0.756, 0.274)$ $(0.155, 0.894)$ $(0.316, 0.775)$ $(0.707, 0.707)$ $(0.628, 0.548)$ $(0.13, 0.874)$ $(0.274, 0.756)$ $(0.548, 0.628)$ $(0.707, 0.707)$ $\widetilde{N}^{(44)}$ $(0.707, 0.707)$ $(0.75, 0.316)$ $(0.894, 0.149)$ $(0.883, 0.128)$ $(0.316, 0.775)$ $(0.707, 0.707)$ $(0.775, 0.316)$ $(0.76, 0.271)$ $(0.149, 0.894)$ $(0.316, 0.775)$ $(0.707, 0.707)$ $(0.628, 0.548)$ $(0.128, 0.883)$ $(0.271, 0.76)$ $(0.548, 0.628)$ $(0.707, 0.707)$ $P^{(44, 0)}$ $(0.707, 0.707)$ $(0.769, 0.328)$ $(0.893, 0.153)$ $(0.879, 0.131)$ $(0.328, 0.769)$ $(0.707, 0.707)$ $(0.772, 0.318)$ $(0.755, 0.272)$ $(0.153, 0.893)$ $(0.318, 0.772)$ $(0.707, 0.707)$ $(0.626, 0.549)$ $(0.131, 0.879)$ $(0.272, 0.755)$ $(0.549, 0.626)$ $(0.707, 0.707)$
The modified individual preference information from three decision makers by Xu's method [41]
 $\widetilde{P}^{(1)}$ $(0.707, 0.707)$ $(0.71, 0.445)$ $(0.01, 0.056)$ $(0.011, 0.553)$ $(0.445, 0.71)$ $(0.707, 0.707)$ $(0.047, 0.013)$ $(0.512, 0.802)$ $(0.056, 0.01)$ $(0.013, 0.047)$ $(0.707, 0.707)$ $(0.529, 0.619)$ $(0.553, 0.011)$ $(0.802, 0.512)$ $(0.619, 0.529)$ $(0.707, 0.707)$ $\widetilde{P}^{(2)}$ $(0.707, 0.707)$ $(0.71, 0.445)$ $(0.01, 0.056)$ $(0.011, 0.553)$ $(0.445, 0.71)$ $(0.707, 0.707)$ $(0.047, 0.014)$ $(0.512, 0.802)$ $(0.056, 0.01)$ $(0.014, 0.047)$ $(0.707, 0.707)$ $(0.529, 0.619)$ $(0.553, 0.011)$ $(0.802, 0.512)$ $(0.619, 0.529)$ $(0.707, 0.707)$ $\widetilde{P}^{(3)}$ $(0.707, 0.707)$ $(0.728, 0.447)$ $(0.011, 0.132)$ $(0.011, 0.553)$ $(0.447, 0.728)$ $(0.707, 0.707)$ $(0.046, 0.03)$ $(0.509, 0.804)$ $(0.132, 0.011)$ $(0.03, 0.046)$ $(0.707, 0.707)$ $(0.5, 0.573)$ $(0.553, 0.011)$ $(0.804, 0.509)$ $(0.573, 0.5)$ $(0.707, 0.707)$ $\widetilde{P}$ $(0.707, 0.707)$ $(0.716, 0.446)$ $(0.01, 0.074)$ $(0.011, 0.553)$ $(0.446, 0.716)$ $(0.707, 0.707)$ $(0.047, 0.018)$ $(0.511, 0.803)$ $(0.074, 0.01)$ $(0.018, 0.047)$ $(0.707, 0.707)$ $(0.519, 0.603)$ $(0.553, 0.011)$ $(0.803, 0.511)$ $(0.603, 0.519)$ $(0.707, 0.707)$
 $\widetilde{P}^{(1)}$ $(0.707, 0.707)$ $(0.71, 0.445)$ $(0.01, 0.056)$ $(0.011, 0.553)$ $(0.445, 0.71)$ $(0.707, 0.707)$ $(0.047, 0.013)$ $(0.512, 0.802)$ $(0.056, 0.01)$ $(0.013, 0.047)$ $(0.707, 0.707)$ $(0.529, 0.619)$ $(0.553, 0.011)$ $(0.802, 0.512)$ $(0.619, 0.529)$ $(0.707, 0.707)$ $\widetilde{P}^{(2)}$ $(0.707, 0.707)$ $(0.71, 0.445)$ $(0.01, 0.056)$ $(0.011, 0.553)$ $(0.445, 0.71)$ $(0.707, 0.707)$ $(0.047, 0.014)$ $(0.512, 0.802)$ $(0.056, 0.01)$ $(0.014, 0.047)$ $(0.707, 0.707)$ $(0.529, 0.619)$ $(0.553, 0.011)$ $(0.802, 0.512)$ $(0.619, 0.529)$ $(0.707, 0.707)$ $\widetilde{P}^{(3)}$ $(0.707, 0.707)$ $(0.728, 0.447)$ $(0.011, 0.132)$ $(0.011, 0.553)$ $(0.447, 0.728)$ $(0.707, 0.707)$ $(0.046, 0.03)$ $(0.509, 0.804)$ $(0.132, 0.011)$ $(0.03, 0.046)$ $(0.707, 0.707)$ $(0.5, 0.573)$ $(0.553, 0.011)$ $(0.804, 0.509)$ $(0.573, 0.5)$ $(0.707, 0.707)$ $\widetilde{P}$ $(0.707, 0.707)$ $(0.716, 0.446)$ $(0.01, 0.074)$ $(0.011, 0.553)$ $(0.446, 0.716)$ $(0.707, 0.707)$ $(0.047, 0.018)$ $(0.511, 0.803)$ $(0.074, 0.01)$ $(0.018, 0.047)$ $(0.707, 0.707)$ $(0.519, 0.603)$ $(0.553, 0.011)$ $(0.803, 0.511)$ $(0.603, 0.519)$ $(0.707, 0.707)$
 [1] Xiao-Xu Chen, Peng Xu, Jiao-Jiao Li, Thomas Walker, Guo-Qiang Yang. Decision-making in a retailer-led closed-loop supply chain involving a third-party logistics provider. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021014 [2] Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021002 [3] Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012 [4] Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018 [5] Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432 [6] Kengo Matsumoto. $C^*$-algebras associated with asymptotic equivalence relations defined by hyperbolic toral automorphisms. Electronic Research Archive, , () : -. doi: 10.3934/era.2021006 [7] Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073 [8] Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 [9] Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464 [10] Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269 [11] Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108 [12] Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320 [13] Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167 [14] Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162 [15] Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380 [16] Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047 [17] Yantao Wang, Linlin Su. Monotone and nonmonotone clines with partial panmixia across a geographical barrier. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4019-4037. doi: 10.3934/dcds.2020056 [18] Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025 [19] Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, , () : -. doi: 10.3934/era.2021008 [20] Musen Xue, Guowei Zhu. Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items. Journal of Industrial & Management Optimization, 2021, 17 (2) : 633-648. doi: 10.3934/jimo.2019126

2019 Impact Factor: 1.366

## Tools

Article outline

Figures and Tables