September  2021, 17(5): 2685-2702. doi: 10.3934/jimo.2020089

Bond pricing formulas for Markov-modulated affine term structure models

1. 

School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, New South Wales, Australia

2. 

Department of Statistical and Actuarial Sciences, University of Western Ontario, London, Ontario, Canada, and, Division of Physical Sciences and Mathematics, University of the Philippines Visayas, Miag-ao, Iloilo, Philippines

* Corresponding author: Rogemar S. Mamon, Department of Statistical and Actuarial Sciences, University of Western Ontario, London, Ontario, Canada. E-mail: rmamon@stats.uwo.ca

Received  October 2019 Revised  February 2020 Published  September 2021 Early access  April 2020

This article provides new developments in characterizing the class of regime-switching exponential affine interest rate processes in the context of pricing a zero-coupon bond. A finite-state Markov chain in continuous time dictates the random switching of time-dependent parameters of such processes. We present exact and approximate bond pricing formulas by solving a system of partial differential equations and minimizing an error functional. The bond price expression exhibits a representation that shows how it is explicitly impacted by the rate matrix and the time-dependent coefficient functions of the short rate models. We validate the bond pricing formulas numerically by examining a regime-switching Vasicek model.

Citation: Marianito R. Rodrigo, Rogemar S. Mamon. Bond pricing formulas for Markov-modulated affine term structure models. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2685-2702. doi: 10.3934/jimo.2020089
References:
[1]

J.-M. BeaccoC. LubochinckyM. BrièreA. Monfort and C. Hillairet, The challenges imposed by low interest rates, Journal of Asset Management, 20 (2019), 413-420. 

[2]

J. CoxJ. Ingersoll and S. Ross, A theory of the term structure of interest rates, Econometrica, 53 (1985), 385-407.  doi: 10.2307/1911242.

[3]

R. Criego and A. Swishchuk, A Black-Scholes formula for a market in a random environment, Theory of Probability and Mathematical Statistics, 62 (2000), 9-18. 

[4]

C. CuchieroD. FilipovićE. Mayerhofer and J. Teichmann, Affine processes on positive semidefinite matrices, Annals of Applied Probability, 21 (2011), 397-463.  doi: 10.1214/10-AAP710.

[5]

D. DuffieD. Filipović and W. Schachermayer, Affine processes and applications in finance, Annals of Applied Probability, 13 (2003), 984-1053.  doi: 10.1214/aoap/1060202833.

[6]

D. Duffie and R. Kan, A yield-factor model of interest rates, Mathematical Finance, 6 (1996), 379-406.  doi: 10.1111/j.1467-9965.1996.tb00123.x.

[7]

Z. Eksi and D. Filipović, Pricing and hedging of inflation-indexed bonds in an affine framework, Journal of Computational and Applied Mathematics, 259 (2014), 452-463.  doi: 10.1016/j.cam.2013.10.023.

[8]

R. Elliott, Stochastic Calculus and Applications, Applications of Mathematics 18, Springer-Verlag, Berlin-Heidelberg-New York, 1982.

[9]

R. Elliott, L. Aggoun and J. Moore, Hidden Markov Models: Estimation and Control, Applications of Mathematics 29, Springer-Verlag, Berlin-Heidelberg-New York, 1995.

[10]

R. ElliottP. Fischer and E. Platen, Filtering and parameter estimation for a mean-reverting interest-rate model, Canadian Applied Mathematics Quarterly, 7 (1999), 381-400. 

[11]

R. Elliott and R. Mamon, An interest rate model with a Markovian mean-reverting level, Quantitative Finance, 2 (2002), 454-458.  doi: 10.1080/14697688.2002.0000012.

[12]

R. Elliott and T. Siu, On Markov-modulated exponential-affine bond price formulae, Applied Mathematical Finance, 16 (2009), 1-15.  doi: 10.1080/13504860802015744.

[13]

R. ElliottT. Siu and A. Badescu, Bond valuation under a discrete-time regime-switching term structure model and its continuous-time extension, Managerial Finance, 37 (2011), 1025-1047.  doi: 10.1108/03074351111167929.

[14]

R. Elliott and J. van der Hoek, Stochastic flows and the forward measure, Finance and Stochastics, 5 (2011), 511-525.  doi: 10.1007/s007800000039.

[15]

R. Elliott and C. Wilson, The term structure of interest rates in a hidden Markov setting, in Hidden Markov Models in Finance (eds. R. Mamon and R. Elliott), Springer, New York, 104 (2007), 15–30. doi: 10.1007/0-387-71163-5_2.

[16]

C. Erlwein and R. Mamon, An on-line estimation scheme for a Hull-White model with HMM-driven parameters, Statistical Methods and Applications, 18 (2009), 87-107.  doi: 10.1007/s10260-007-0082-4.

[17]

K. FanY. ShenT. Siu and R. Wang, Pricing dynamic fund protection under hidden Markov models, IMA Journal of Management Mathematics, 29 (2018), 99-117.  doi: 10.1093/imaman/dpw014.

[18]

D. Filipovi, Time-inhomogeneous affine processes, Stochastic Processes and Their Applications, 115 (2005), 639–659. doi: 10.1016/j.spa.2004.11.006.

[19]

H. GaoR. Mamon and X. Liu, Pricing a guaranteed annuity option under correlated and regime-switching risk factors, European Actuarial Journal, 5 (2015), 309-326.  doi: 10.1007/s13385-015-0118-3.

[20]

H. GaoR. MamonX. Liu and A. Tenyakov, Mortality modelling with regime-switching for the valuation of a guaranteed annuity option, Insurance: Mathematics and Economics, 63 (2015), 108-120.  doi: 10.1016/j.insmatheco.2015.03.018.

[21]

L. Gonon and J. Teichmann, Linearised filtering of affine processes using stochastic Ricatti equations, Stochastic Processes and their Applications, 130 (2020), 394-430.  doi: 10.1016/j.spa.2019.03.016.

[22]

S. Grimm, C. Erlwein-Sayer and R. Mamon, Discrete-time implementation of continuous-time filters with applications to regime-switching dynamics estimation, Nonlinear Analysis: Hybrid Systems, 35 (2020), 100814, 20 pp. doi: 10.1016/j.nahs.2019.08.001.

[23]

J. Hlouskova and L. Sögner, GMM estimation of affine term structure models, Econometrics and Statistics, 13 (2020), 2-15.  doi: 10.1016/j.ecosta.2019.10.001.

[24]

J. Hull and A. White, Numerical procedures for implementing term structure models II: Two factor models, Journal of Derivatives, 2 (1994), 37-48.  doi: 10.3905/jod.1994.407908.

[25]

C. Landén, Bond pricing in a hidden Markov model of the short rate, Finance and Stochastics, 4 (2000), 371-389.  doi: 10.1007/PL00013526.

[26]

G. Last and A. Brandt, Marked Point Processes on the Real Line: The Dynamical Approach, Springer-Verlag, New York, 1995.

[27]

R. Mamon, On the interface of probabilistic and PDE methods in a multi-factor term structure theory, International Journal of Mathematical Education in Science and Technology, 35 (2004), 661-668.  doi: 10.1080/00207390410001714902.

[28]

M. R. Rodrigo and R. S. Mamon, A unified approach to explicit bond price solutions under a time-dependent affine term structure modelling framework, Quantitative Finance, 11 (2011), 487-493.  doi: 10.1080/14697680903341798.

[29]

M. R. Rodrigo and R. S. Mamon, An alternative approach to the calibration of the Vasicek and CIR interest rate models via generating functions, Quantitative Finance, 14 (2014), 1961-1970.  doi: 10.1080/14697688.2013.765062.

[30] K. Singleton, Empirical Dynamic Asset Pricing: Model Specification and Econometric Assessment, Princeton University Press, Princeton, 2006. 
[31]

A. TenyakovR. Mamon and M. Davison, Filtering of a discrete-time HMM-driven multivariate Ornstein-Uhlenbeck model with application to forecasting market liquidity regimes, IEEE Journal of Selected Topics in Signal Processing, 10 (2016), 994-1005.  doi: 10.1109/JSTSP.2016.2549499.

[32]

O. Vasicek, An equilibrium characterisation of the term structure, Journal of Financial Economics, 5 (1977), 177-188. 

[33]

M. van Beek, M. Mandjes, P. Spreij and E. Winands, Markov switching affine processes and applications to pricing, Actuarial and Financial Mathematics Conference, Interplay between Finance and Insurance: February 6–7, 2014 (eds. M. Vanmaele, G. Deelstra, A. De Schepper, J. Dhaene, W. Schoutens, S. Vanduffel and D. Vyncke), Brussels, België: Koninklijke Vlaamse Academie van België voor Wetenschappen en Kunsten, (2014), 97–102.

[34]

S. Wu and Y. Zeng, An econometric model of the term structure of interest rates under regime-switching risk, Hidden Markov Models in Finance: Further Developments and Applications (eds. R. Mamon and R. Elliott), Springer, New York, 209 (2014), 55–83. doi: 10.1007/978-1-4899-7442-6_3.

[35]

X. Xi and R. S. Mamon, Capturing the regime-switching and memory properties of interest rates, Computational Economics, 44 (2014), 307-337.  doi: 10.1007/s10614-013-9396-5.

[36]

X. Xi, M. R. Rodrigo and R. S. Mamon, Parameter estimation of a regime-switching model using an inverse Stieltjes moment approach, Stochastic Processes, Finance and Control (eds. S. Cohen, D. Madan, T. Siu and H. Yang), World Scientific, Singapore, 1 (2012), 549–569. doi: 10.1142/9789814383318_0022.

[37]

Y. Zhao and R. Mamon, Annuity contract valuation under dependent risks, Japan Journal of Industrial and Applied Mathematics, 37 (2020), 1-23.  doi: 10.1007/s13160-019-00366-2.

[38]

Y. ZhaoR. Mamon and H. Gao, A two-decrement model for the valuation and risk measurement of a guaranteed annuity option, Econometrics and Statistics, 8 (2018), 231-249.  doi: 10.1016/j.ecosta.2018.06.004.

[39]

N. Zhou and R. Mamon, An accessible implementation of interest rate models with regime-switching, Expert Systems with Applications, 9 (2012), 4679-4689. 

[40]

D.-M. ZhuJ. LuW.-K. Ching and T.-K. Siu, Option pricing under a stochastic interest rate and volatility model with hidden Markovian regime-switching, Computational Economics, 53 (2019), 555-586. 

show all references

References:
[1]

J.-M. BeaccoC. LubochinckyM. BrièreA. Monfort and C. Hillairet, The challenges imposed by low interest rates, Journal of Asset Management, 20 (2019), 413-420. 

[2]

J. CoxJ. Ingersoll and S. Ross, A theory of the term structure of interest rates, Econometrica, 53 (1985), 385-407.  doi: 10.2307/1911242.

[3]

R. Criego and A. Swishchuk, A Black-Scholes formula for a market in a random environment, Theory of Probability and Mathematical Statistics, 62 (2000), 9-18. 

[4]

C. CuchieroD. FilipovićE. Mayerhofer and J. Teichmann, Affine processes on positive semidefinite matrices, Annals of Applied Probability, 21 (2011), 397-463.  doi: 10.1214/10-AAP710.

[5]

D. DuffieD. Filipović and W. Schachermayer, Affine processes and applications in finance, Annals of Applied Probability, 13 (2003), 984-1053.  doi: 10.1214/aoap/1060202833.

[6]

D. Duffie and R. Kan, A yield-factor model of interest rates, Mathematical Finance, 6 (1996), 379-406.  doi: 10.1111/j.1467-9965.1996.tb00123.x.

[7]

Z. Eksi and D. Filipović, Pricing and hedging of inflation-indexed bonds in an affine framework, Journal of Computational and Applied Mathematics, 259 (2014), 452-463.  doi: 10.1016/j.cam.2013.10.023.

[8]

R. Elliott, Stochastic Calculus and Applications, Applications of Mathematics 18, Springer-Verlag, Berlin-Heidelberg-New York, 1982.

[9]

R. Elliott, L. Aggoun and J. Moore, Hidden Markov Models: Estimation and Control, Applications of Mathematics 29, Springer-Verlag, Berlin-Heidelberg-New York, 1995.

[10]

R. ElliottP. Fischer and E. Platen, Filtering and parameter estimation for a mean-reverting interest-rate model, Canadian Applied Mathematics Quarterly, 7 (1999), 381-400. 

[11]

R. Elliott and R. Mamon, An interest rate model with a Markovian mean-reverting level, Quantitative Finance, 2 (2002), 454-458.  doi: 10.1080/14697688.2002.0000012.

[12]

R. Elliott and T. Siu, On Markov-modulated exponential-affine bond price formulae, Applied Mathematical Finance, 16 (2009), 1-15.  doi: 10.1080/13504860802015744.

[13]

R. ElliottT. Siu and A. Badescu, Bond valuation under a discrete-time regime-switching term structure model and its continuous-time extension, Managerial Finance, 37 (2011), 1025-1047.  doi: 10.1108/03074351111167929.

[14]

R. Elliott and J. van der Hoek, Stochastic flows and the forward measure, Finance and Stochastics, 5 (2011), 511-525.  doi: 10.1007/s007800000039.

[15]

R. Elliott and C. Wilson, The term structure of interest rates in a hidden Markov setting, in Hidden Markov Models in Finance (eds. R. Mamon and R. Elliott), Springer, New York, 104 (2007), 15–30. doi: 10.1007/0-387-71163-5_2.

[16]

C. Erlwein and R. Mamon, An on-line estimation scheme for a Hull-White model with HMM-driven parameters, Statistical Methods and Applications, 18 (2009), 87-107.  doi: 10.1007/s10260-007-0082-4.

[17]

K. FanY. ShenT. Siu and R. Wang, Pricing dynamic fund protection under hidden Markov models, IMA Journal of Management Mathematics, 29 (2018), 99-117.  doi: 10.1093/imaman/dpw014.

[18]

D. Filipovi, Time-inhomogeneous affine processes, Stochastic Processes and Their Applications, 115 (2005), 639–659. doi: 10.1016/j.spa.2004.11.006.

[19]

H. GaoR. Mamon and X. Liu, Pricing a guaranteed annuity option under correlated and regime-switching risk factors, European Actuarial Journal, 5 (2015), 309-326.  doi: 10.1007/s13385-015-0118-3.

[20]

H. GaoR. MamonX. Liu and A. Tenyakov, Mortality modelling with regime-switching for the valuation of a guaranteed annuity option, Insurance: Mathematics and Economics, 63 (2015), 108-120.  doi: 10.1016/j.insmatheco.2015.03.018.

[21]

L. Gonon and J. Teichmann, Linearised filtering of affine processes using stochastic Ricatti equations, Stochastic Processes and their Applications, 130 (2020), 394-430.  doi: 10.1016/j.spa.2019.03.016.

[22]

S. Grimm, C. Erlwein-Sayer and R. Mamon, Discrete-time implementation of continuous-time filters with applications to regime-switching dynamics estimation, Nonlinear Analysis: Hybrid Systems, 35 (2020), 100814, 20 pp. doi: 10.1016/j.nahs.2019.08.001.

[23]

J. Hlouskova and L. Sögner, GMM estimation of affine term structure models, Econometrics and Statistics, 13 (2020), 2-15.  doi: 10.1016/j.ecosta.2019.10.001.

[24]

J. Hull and A. White, Numerical procedures for implementing term structure models II: Two factor models, Journal of Derivatives, 2 (1994), 37-48.  doi: 10.3905/jod.1994.407908.

[25]

C. Landén, Bond pricing in a hidden Markov model of the short rate, Finance and Stochastics, 4 (2000), 371-389.  doi: 10.1007/PL00013526.

[26]

G. Last and A. Brandt, Marked Point Processes on the Real Line: The Dynamical Approach, Springer-Verlag, New York, 1995.

[27]

R. Mamon, On the interface of probabilistic and PDE methods in a multi-factor term structure theory, International Journal of Mathematical Education in Science and Technology, 35 (2004), 661-668.  doi: 10.1080/00207390410001714902.

[28]

M. R. Rodrigo and R. S. Mamon, A unified approach to explicit bond price solutions under a time-dependent affine term structure modelling framework, Quantitative Finance, 11 (2011), 487-493.  doi: 10.1080/14697680903341798.

[29]

M. R. Rodrigo and R. S. Mamon, An alternative approach to the calibration of the Vasicek and CIR interest rate models via generating functions, Quantitative Finance, 14 (2014), 1961-1970.  doi: 10.1080/14697688.2013.765062.

[30] K. Singleton, Empirical Dynamic Asset Pricing: Model Specification and Econometric Assessment, Princeton University Press, Princeton, 2006. 
[31]

A. TenyakovR. Mamon and M. Davison, Filtering of a discrete-time HMM-driven multivariate Ornstein-Uhlenbeck model with application to forecasting market liquidity regimes, IEEE Journal of Selected Topics in Signal Processing, 10 (2016), 994-1005.  doi: 10.1109/JSTSP.2016.2549499.

[32]

O. Vasicek, An equilibrium characterisation of the term structure, Journal of Financial Economics, 5 (1977), 177-188. 

[33]

M. van Beek, M. Mandjes, P. Spreij and E. Winands, Markov switching affine processes and applications to pricing, Actuarial and Financial Mathematics Conference, Interplay between Finance and Insurance: February 6–7, 2014 (eds. M. Vanmaele, G. Deelstra, A. De Schepper, J. Dhaene, W. Schoutens, S. Vanduffel and D. Vyncke), Brussels, België: Koninklijke Vlaamse Academie van België voor Wetenschappen en Kunsten, (2014), 97–102.

[34]

S. Wu and Y. Zeng, An econometric model of the term structure of interest rates under regime-switching risk, Hidden Markov Models in Finance: Further Developments and Applications (eds. R. Mamon and R. Elliott), Springer, New York, 209 (2014), 55–83. doi: 10.1007/978-1-4899-7442-6_3.

[35]

X. Xi and R. S. Mamon, Capturing the regime-switching and memory properties of interest rates, Computational Economics, 44 (2014), 307-337.  doi: 10.1007/s10614-013-9396-5.

[36]

X. Xi, M. R. Rodrigo and R. S. Mamon, Parameter estimation of a regime-switching model using an inverse Stieltjes moment approach, Stochastic Processes, Finance and Control (eds. S. Cohen, D. Madan, T. Siu and H. Yang), World Scientific, Singapore, 1 (2012), 549–569. doi: 10.1142/9789814383318_0022.

[37]

Y. Zhao and R. Mamon, Annuity contract valuation under dependent risks, Japan Journal of Industrial and Applied Mathematics, 37 (2020), 1-23.  doi: 10.1007/s13160-019-00366-2.

[38]

Y. ZhaoR. Mamon and H. Gao, A two-decrement model for the valuation and risk measurement of a guaranteed annuity option, Econometrics and Statistics, 8 (2018), 231-249.  doi: 10.1016/j.ecosta.2018.06.004.

[39]

N. Zhou and R. Mamon, An accessible implementation of interest rate models with regime-switching, Expert Systems with Applications, 9 (2012), 4679-4689. 

[40]

D.-M. ZhuJ. LuW.-K. Ching and T.-K. Siu, Option pricing under a stochastic interest rate and volatility model with hidden Markovian regime-switching, Computational Economics, 53 (2019), 555-586. 

[1]

Jun Li, Fubao Xi. Exponential ergodicity for regime-switching diffusion processes in total variation norm. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021309

[2]

Christoforidou Amalia, Christian-Oliver Ewald. A lattice method for option evaluation with regime-switching asset correlation structure. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1729-1752. doi: 10.3934/jimo.2020042

[3]

Kun Fan, Yang Shen, Tak Kuen Siu, Rongming Wang. On a Markov chain approximation method for option pricing with regime switching. Journal of Industrial and Management Optimization, 2016, 12 (2) : 529-541. doi: 10.3934/jimo.2016.12.529

[4]

Jiaqin Wei, Zhuo Jin, Hailiang Yang. Optimal dividend policy with liability constraint under a hidden Markov regime-switching model. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1965-1993. doi: 10.3934/jimo.2018132

[5]

Yinghui Dong, Kam Chuen Yuen, Guojing Wang. Pricing credit derivatives under a correlated regime-switching hazard processes model. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1395-1415. doi: 10.3934/jimo.2016079

[6]

Meiqiao Ai, Zhimin Zhang, Wenguang Yu. Valuing equity-linked death benefits with a threshold expense structure under a regime-switching Lévy model. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022007

[7]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2415-2433. doi: 10.3934/jimo.2021074

[8]

Fuke Wu, George Yin, Zhuo Jin. Kolmogorov-type systems with regime-switching jump diffusion perturbations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2293-2319. doi: 10.3934/dcdsb.2016048

[9]

Mourad Bellassoued, Raymond Brummelhuis, Michel Cristofol, Éric Soccorsi. Stable reconstruction of the volatility in a regime-switching local-volatility model. Mathematical Control and Related Fields, 2020, 10 (1) : 189-215. doi: 10.3934/mcrf.2019036

[10]

Jiaqin Wei. Time-inconsistent optimal control problems with regime-switching. Mathematical Control and Related Fields, 2017, 7 (4) : 585-622. doi: 10.3934/mcrf.2017022

[11]

Zhuo Jin, Linyi Qian. Lookback option pricing for regime-switching jump diffusion models. Mathematical Control and Related Fields, 2015, 5 (2) : 237-258. doi: 10.3934/mcrf.2015.5.237

[12]

Wensheng Yin, Jinde Cao, Yong Ren. Inverse optimal control of regime-switching jump diffusions. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021034

[13]

Engel John C Dela Vega, Robert J Elliott. Conditional coherent risk measures and regime-switching conic pricing. Probability, Uncertainty and Quantitative Risk, 2021, 6 (4) : 267-300. doi: 10.3934/puqr.2021014

[14]

H.Thomas Banks, Shuhua Hu. Nonlinear stochastic Markov processes and modeling uncertainty in populations. Mathematical Biosciences & Engineering, 2012, 9 (1) : 1-25. doi: 10.3934/mbe.2012.9.1

[15]

Lin Xu, Rongming Wang, Dingjun Yao. Optimal stochastic investment games under Markov regime switching market. Journal of Industrial and Management Optimization, 2014, 10 (3) : 795-815. doi: 10.3934/jimo.2014.10.795

[16]

Zhuo Jin, George Yin, Hailiang Yang. Numerical methods for dividend optimization using regime-switching jump-diffusion models. Mathematical Control and Related Fields, 2011, 1 (1) : 21-40. doi: 10.3934/mcrf.2011.1.21

[17]

Ping Chen, Haixiang Yao. Continuous-time mean-variance portfolio selection with no-shorting constraints and regime-switching. Journal of Industrial and Management Optimization, 2020, 16 (2) : 531-551. doi: 10.3934/jimo.2018166

[18]

Chao Xu, Yinghui Dong, Zhaolu Tian, Guojing Wang. Pricing dynamic fund protection under a Regime-switching Jump-diffusion model with stochastic protection level. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2603-2623. doi: 10.3934/jimo.2019072

[19]

Jiapeng Liu, Ruihua Liu, Dan Ren. Investment and consumption in regime-switching models with proportional transaction costs and log utility. Mathematical Control and Related Fields, 2017, 7 (3) : 465-491. doi: 10.3934/mcrf.2017017

[20]

Tak Kuen Siu, Yang Shen. Risk-minimizing pricing and Esscher transform in a general non-Markovian regime-switching jump-diffusion model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2595-2626. doi: 10.3934/dcdsb.2017100

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (330)
  • HTML views (715)
  • Cited by (0)

Other articles
by authors

[Back to Top]