• Previous Article
    Optimal reinsurance and investment strategies for an insurer and a reinsurer under Hestons SV model: HARA utility and Legendre transform
  • JIMO Home
  • This Issue
  • Next Article
    New M-eigenvalue intervals and application to the strong ellipticity of fourth-order partially symmetric tensors
doi: 10.3934/jimo.2020090

Lookback option pricing problem of mean-reverting stock model in uncertain environment

1. 

School of Mathematics, Renmin University of China, Beijing 100872, China

2. 

School of Information Technology & Management, University of International, Business & Economics, Beijing 100029, China

3. 

School of Economics & Management, Beijing University of Chemical, Technology, Beijing 100029, China

* Corresponding author: Xiangfeng Yang

Received  February 2019 Revised  January 2020 Published  May 2020

Fund Project: The second author is supported by the Program for Young Excellent Talents in UIBE (No.18YQ06).

A lookback option is an exotic option that allows investors to look back at the underlying prices occurring over the life of the option, and to exercise the right at assets optimal point. This paper proposes a mean-reverting stock model to investigate the lookback option in an uncertain environment. The lookback call and put options pricing formulas of the stock model are derived, and the corresponding numerical algorithms are designed to compute the prices of these two options.

Citation: Miao Tian, Xiangfeng Yang, Yi Zhang. Lookback option pricing problem of mean-reverting stock model in uncertain environment. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020090
References:
[1]

X. Chen, Ametican option pricing formula for uncertain financial market, Int. J. Oper. Res. (Taichung), 8 (2011), 27-32.   Google Scholar

[2]

X. Chen and B. Liu, Existence and uniqueness theorem for uncertain differential equations, Fuzzy Optim. Decis. Mak., 9 (2010), 69-81.  doi: 10.1007/s10700-010-9073-2.  Google Scholar

[3]

X. ChenY. Liu and D. A. Ralesu, Uncertain stock model with periodic dividends, Fuzzy Optim. Decis. Mak., 12 (2013), 111-123.  doi: 10.1007/s10700-012-9141-x.  Google Scholar

[4]

Y. GaoX. Yang and Z. Fu, Lookback option pricing problem of uncertain exponential Ornstein-Uhlenbeck model, Soft Computing, 22 (2018), 5647-5654.   Google Scholar

[5]

X. Ji and J. Zhou, Option pricing for an uncertain stock model with jumps, Soft Computing, 19 (2015), 3323-3329.   Google Scholar

[6]

A. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer-Verlag, Berlin-New York, 1973.  Google Scholar

[7]

B. Liu, Uncertainty theory. An introduction to its axiomatic foundations, in Studies in Fuzziness and Soft Computing, 154, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-540-39987-2.  Google Scholar

[8]

B. Liu, Fuzzy process, hybrid process and uncertain process, Journal of Uncertain Systems, 2 (2008), 3-16.   Google Scholar

[9]

B. Liu, Some research problems in uncertainty theory, Journal of Uncertain Systems, 3 (2009), 3-10.   Google Scholar

[10]

B. Liu, Toward uncertain finance theory, J. Uncertain. Anal. Appl., 1 (2013). Google Scholar

[11]

Y. LiuX. Chen and D. A. Ralescu, Uncertain currency model and currency option pricing, International Journal of Intelligent Systems, 30 (2015), 40-51.   Google Scholar

[12]

J. Peng and K. Yao, A new option pricing model for stocks in uncertainty markets, Int. J. Oper. Res. (Taichung), 8 (2011), 18-26.   Google Scholar

[13]

Y. Sun and T. Su, Mean-reverting stock model with floating interest rate in uncertain environment, Fuzzy Optim. Decis. Mak., 16 (2017), 235-255.  doi: 10.1007/s10700-016-9247-7.  Google Scholar

[14]

M. TianX. Yang and Y. Zhang, Barrier option pricing problem of mean-reverting stock model in uncertain environment, Math. Comput. Simulation, 166 (2019), 126-143.  doi: 10.1016/j.matcom.2019.04.009.  Google Scholar

[15]

M. Tian, X. Yang and S. Kar, Equity warrants pricing problem of mean-reverting model in uncertain environment, Phys. A, 531 (2019), 9 pp. doi: 10.1016/j.physa.2019.121593.  Google Scholar

[16]

X. Yang and J. Gao, Uncertain differential games with application to capitalism, J. Uncertain. Anal. Appl., 1 (2013), Art. 17. Google Scholar

[17]

X. Yang and J. Gao, Linear-quadratic uncertain differential games with application to resource extraction problem, IEEE Transactions on Fuzzy Systems, 24 (2016), 819-826.   Google Scholar

[18]

X. Yang and K. Yao, Uncertain partial differential equation with application to heat conduction, Fuzzy Optim. Decis. Mak., 16 (2017), 379-403.  doi: 10.1007/s10700-016-9253-9.  Google Scholar

[19]

X. YangZ. Zhang and X. Gao, Asian-barrier option pricing formulas of uncertain financial market, Chaos Solitons Fractals, 123 (2019), 79-86.  doi: 10.1016/j.chaos.2019.03.037.  Google Scholar

[20]

K. Yao, No-arbitrage determinant theorems on mean-reverting stock model in uncertain market, Knowledge Based Systems, 35 (2012), 259-263.   Google Scholar

[21]

K. Yao, Extreme values and integral of solution of uncertain differential equation, J. Uncertain. Anal. Appl., 1 (2013), Art. 2. Google Scholar

[22]

K. Yao and X. Chen, A numerical method for solving uncertain differential equations, J. Intell. Fuzzy Systems, 25 (2013), 825-832.  doi: 10.3233/IFS-120688.  Google Scholar

[23]

K. Yao, Uncertain contour process and its application in stock model with floating interest rate, Fuzzy Optim. Decis. Mak., 14 (2015), 399-424.  doi: 10.1007/s10700-015-9211-y.  Google Scholar

[24]

K. Yao, Uncertain Differential Equations, Springer Uncertainty Research, Springer-Verlag, Berlin, 2016. doi: 10.1007/978-3-662-52729-0.  Google Scholar

[25]

X. Yu, A stock model with jumps for uncertain markets, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems, 20 (2012), 421-432.  doi: 10.1142/S0218488512500213.  Google Scholar

[26]

Z. Zhang and W. Liu, Geometric average asian option pricing for uncertain financial market, Journal of Uncertain Systems, 8 (2014), 317-320.   Google Scholar

[27]

Y. Zhu, Uncertain optimal control with application to a portfolio selection model, Cybernetics and Systems, 41 (2010), 535-547.   Google Scholar

show all references

References:
[1]

X. Chen, Ametican option pricing formula for uncertain financial market, Int. J. Oper. Res. (Taichung), 8 (2011), 27-32.   Google Scholar

[2]

X. Chen and B. Liu, Existence and uniqueness theorem for uncertain differential equations, Fuzzy Optim. Decis. Mak., 9 (2010), 69-81.  doi: 10.1007/s10700-010-9073-2.  Google Scholar

[3]

X. ChenY. Liu and D. A. Ralesu, Uncertain stock model with periodic dividends, Fuzzy Optim. Decis. Mak., 12 (2013), 111-123.  doi: 10.1007/s10700-012-9141-x.  Google Scholar

[4]

Y. GaoX. Yang and Z. Fu, Lookback option pricing problem of uncertain exponential Ornstein-Uhlenbeck model, Soft Computing, 22 (2018), 5647-5654.   Google Scholar

[5]

X. Ji and J. Zhou, Option pricing for an uncertain stock model with jumps, Soft Computing, 19 (2015), 3323-3329.   Google Scholar

[6]

A. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer-Verlag, Berlin-New York, 1973.  Google Scholar

[7]

B. Liu, Uncertainty theory. An introduction to its axiomatic foundations, in Studies in Fuzziness and Soft Computing, 154, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-540-39987-2.  Google Scholar

[8]

B. Liu, Fuzzy process, hybrid process and uncertain process, Journal of Uncertain Systems, 2 (2008), 3-16.   Google Scholar

[9]

B. Liu, Some research problems in uncertainty theory, Journal of Uncertain Systems, 3 (2009), 3-10.   Google Scholar

[10]

B. Liu, Toward uncertain finance theory, J. Uncertain. Anal. Appl., 1 (2013). Google Scholar

[11]

Y. LiuX. Chen and D. A. Ralescu, Uncertain currency model and currency option pricing, International Journal of Intelligent Systems, 30 (2015), 40-51.   Google Scholar

[12]

J. Peng and K. Yao, A new option pricing model for stocks in uncertainty markets, Int. J. Oper. Res. (Taichung), 8 (2011), 18-26.   Google Scholar

[13]

Y. Sun and T. Su, Mean-reverting stock model with floating interest rate in uncertain environment, Fuzzy Optim. Decis. Mak., 16 (2017), 235-255.  doi: 10.1007/s10700-016-9247-7.  Google Scholar

[14]

M. TianX. Yang and Y. Zhang, Barrier option pricing problem of mean-reverting stock model in uncertain environment, Math. Comput. Simulation, 166 (2019), 126-143.  doi: 10.1016/j.matcom.2019.04.009.  Google Scholar

[15]

M. Tian, X. Yang and S. Kar, Equity warrants pricing problem of mean-reverting model in uncertain environment, Phys. A, 531 (2019), 9 pp. doi: 10.1016/j.physa.2019.121593.  Google Scholar

[16]

X. Yang and J. Gao, Uncertain differential games with application to capitalism, J. Uncertain. Anal. Appl., 1 (2013), Art. 17. Google Scholar

[17]

X. Yang and J. Gao, Linear-quadratic uncertain differential games with application to resource extraction problem, IEEE Transactions on Fuzzy Systems, 24 (2016), 819-826.   Google Scholar

[18]

X. Yang and K. Yao, Uncertain partial differential equation with application to heat conduction, Fuzzy Optim. Decis. Mak., 16 (2017), 379-403.  doi: 10.1007/s10700-016-9253-9.  Google Scholar

[19]

X. YangZ. Zhang and X. Gao, Asian-barrier option pricing formulas of uncertain financial market, Chaos Solitons Fractals, 123 (2019), 79-86.  doi: 10.1016/j.chaos.2019.03.037.  Google Scholar

[20]

K. Yao, No-arbitrage determinant theorems on mean-reverting stock model in uncertain market, Knowledge Based Systems, 35 (2012), 259-263.   Google Scholar

[21]

K. Yao, Extreme values and integral of solution of uncertain differential equation, J. Uncertain. Anal. Appl., 1 (2013), Art. 2. Google Scholar

[22]

K. Yao and X. Chen, A numerical method for solving uncertain differential equations, J. Intell. Fuzzy Systems, 25 (2013), 825-832.  doi: 10.3233/IFS-120688.  Google Scholar

[23]

K. Yao, Uncertain contour process and its application in stock model with floating interest rate, Fuzzy Optim. Decis. Mak., 14 (2015), 399-424.  doi: 10.1007/s10700-015-9211-y.  Google Scholar

[24]

K. Yao, Uncertain Differential Equations, Springer Uncertainty Research, Springer-Verlag, Berlin, 2016. doi: 10.1007/978-3-662-52729-0.  Google Scholar

[25]

X. Yu, A stock model with jumps for uncertain markets, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems, 20 (2012), 421-432.  doi: 10.1142/S0218488512500213.  Google Scholar

[26]

Z. Zhang and W. Liu, Geometric average asian option pricing for uncertain financial market, Journal of Uncertain Systems, 8 (2014), 317-320.   Google Scholar

[27]

Y. Zhu, Uncertain optimal control with application to a portfolio selection model, Cybernetics and Systems, 41 (2010), 535-547.   Google Scholar

Figure 1.  Lookback call option price $ f_{call} $ with different parameters
Figure 2.  Lookback put option price $ f_{put} $ with different parameters
[1]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065

[2]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[3]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[4]

Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2020033

[5]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[6]

Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133

[7]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[8]

Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326

[9]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[10]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[11]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[12]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[13]

Gi-Chan Bae, Christian Klingenberg, Marlies Pirner, Seok-Bae Yun. BGK model of the multi-species Uehling-Uhlenbeck equation. Kinetic & Related Models, 2021, 14 (1) : 25-44. doi: 10.3934/krm.2020047

[14]

Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167

[15]

Hanyu Gu, Hue Chi Lam, Yakov Zinder. Planning rolling stock maintenance: Optimization of train arrival dates at a maintenance center. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020177

[16]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[17]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[18]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[19]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[20]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, Stock price fluctuation prediction method based on time series analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 915-915. doi: 10.3934/dcdss.2019061

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]