[1]
|
S. Banert, R. I. Bot and E. R. Csetnek, Fixing and extending some recent results on the ADMM algorithm, preprint, arXiv: 1612.05057.
|
[2]
|
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and TrendsⓇ in Machine Learning, 3 (2011), 1–122.
|
[3]
|
G. Chen and M. Teboulle, A proximal-based decomposition method for convex minimization problems, Math. Programming, 64 (1994), 81-101.
doi: 10.1007/BF01582566.
|
[4]
|
W. Deng and W. Yin, On the global and linear convergence of the generalized alternating direction method of multipliers, J. Sci. Comput., 66 (2016), 889-916.
doi: 10.1007/s10915-015-0048-x.
|
[5]
|
J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Programming, 55 (1992), 293-318.
doi: 10.1007/BF01581204.
|
[6]
|
J. Eckstein and M. Fukushima, Some reformulations and applications of the alternating direction method of multipliers, in Large Scale Optimization (Gainesville, FL, 1993), Kluwer Acad. Publ., Dordrecht, 1994,115–134.
doi: 10.1007/978-1-4613-3632-7_7.
|
[7]
|
J. Eckstein and W. Yao, Approximate ADMM algorithms derived from Lagrangian splitting, Comput. Optim. Appl., 68 (2017), 363-405.
doi: 10.1007/s10589-017-9911-z.
|
[8]
|
J. Eckstein and W. Yao, Relative-error approximate versions of Douglas-Rachford splitting and special cases of the ADMM, Math. Program., 170 (2018), 417-444.
doi: 10.1007/s10107-017-1160-5.
|
[9]
|
M. Fazel, T. K. Pong, D. Sun and P. Tseng, Hankel matrix rank minimization with applications to system identification and realization, SIAM J. Matrix Anal. Appl., 34 (2013), 946-977.
doi: 10.1137/110853996.
|
[10]
|
R. Fletcher, Practical Methods of Optimization, Wiley-Interscience [John Wiley & Sons], New York, 2001.
|
[11]
|
C. A. Floudas and P. M. Pardalos, Encyclopedia of Optimization. Vol. I–VI, Kluwer Academic Publishers, Dordrecht, 2001.
doi: 10.1016/j.tcs.2009.07.038.
|
[12]
|
D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Computers & Mathematics with Applications, 2 (1976), 17-40.
doi: 10.1016/0898-1221(76)90003-1.
|
[13]
|
R. Glowinski and A. Marroco, Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité, d'une classe de problèmes de Dirichlet non linéaires, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér., 9 (1975), 41–76.
doi: 10.1051/m2an/197509R200411.
|
[14]
|
M. L. N. Gon{\c{c}}alves, M. M. Alves and J. G. Melo, Pointwise and ergodic convergence rates of a variable metric proximal alternating direction method of multipliers, J. Optim. Theory Appl., 177 (2018), 448-478.
doi: 10.1007/s10957-018-1232-6.
|
[15]
|
Y. Gu and N. Yamashita, An alternating direction method of multipliers with the BFGS update for structured convex quadratic optimization, preprint, arXiv: 1903.02270.
|
[16]
|
B. He, L.-Z. Liao, D. Han and H. Yang, A new inexact alternating directions method for monotone variational inequalities, Math. Program., 92 (2002), 103-118.
doi: 10.1007/s101070100280.
|
[17]
|
B. He, F. Ma and X. Yuan, Optimally linearizing the alternating direction method of multipliers for convex programming, Comput. Optim. Appl., 75 (2020), 361-388.
doi: 10.1007/s10589-019-00152-3.
|
[18]
|
B. He and X. Yuan, On the ${O}(1/n)$ convergence rate of the {D}ouglas-{R}achford alternating direction method, SIAM J. Numer. Anal., 50 (2012), 700-709.
doi: 10.1137/110836936.
|
[19]
|
K. Koh, S.-J. Kim and S. Boyd, An interior-point method for large-scale $l_1$-regularized logistic regression, J. Mach. Learn. Res., 8 (2007), 1519-1555.
|
[20]
|
M. Li, D. Sun and K.-C. Toh, A majorized ADMM with indefinite proximal terms for linearly constrained convex composite optimization, SIAM J. Optim., 26 (2016), 922-950.
doi: 10.1137/140999025.
|
[21]
|
P. A. Lotito, L. A. Parente and M. V. Solodov, A class of variable metric decomposition methods for monotone variational inclusions, J. Convex Anal., 16 (2009), 857-880.
|
[22]
|
D. G. Luenberger and Y. Ye, Linear and nonlinear programming, in International Series in Operations Research & Management Science, 228, Springer, Cham, 1984.
doi: 10.1007/978-3-319-18842-3.
|
[23]
|
J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in Operations Research and Financial Engineering, 2$^nd$ edition, Springer, New York, 2006.
|
[24]
|
R. T. Rockafellar and R. J.-B. Wets, Numerical Optimization, Springer Science & Business Media, 2009.
|
[25]
|
M. H. Xu and T. Wu, A class of linearized proximal alternating direction methods, J. Optim. Theory Appl., 151 (2011), 321-337.
doi: 10.1007/s10957-011-9876-5.
|
[26]
|
X.-M. Yuan, The improvement with relative errors of He et al.'s inexact alternating direction method for monotone variational inequalities, Math. Comput. Modelling, 42 (2005), 1225-1236.
doi: 10.1016/j.mcm.2005.04.007.
|