doi: 10.3934/jimo.2020103

Optimal reinsurance with default risk: A reinsurer's perspective

1. 

School of Mathematics and System Sciences, Xinjiang University, Urumqi Xinjiang, 830046, China

2. 

School of Mathematics and Statistics, Wuhan University, Wuhan Hubei, 430072, China

* Corresponding author: Lijun Wu

Received  May 2019 Revised  January 2020 Published  June 2020

Fund Project: This work was supported by the National Natural Science Foundation of China (Nos: 11601463, 11861064, 11771343)

In this paper, we study the optimal reinsurance design with default risk by minimizing the VaR (value at risk) of the reinsurer's total risk exposure. The optimal reinsurance treaty is provided. When the reinsurance premium principle is specified to the expected value and exponential premium principles, the explicit expressions for the optimal reinsurance treaties are given, respectively.

Citation: Tao Chen, Wei Liu, Tao Tan, Lijun Wu, Yijun Hu. Optimal reinsurance with default risk: A reinsurer's perspective. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020103
References:
[1]

A. V. AsimitA. M. Badescu and T. Verdonck, Optimal risk transfer under quantile-based risk measures, Insurance: Mathematics and Economics, 53 (2013), 252-265.  doi: 10.1016/j.insmatheco.2013.05.005.  Google Scholar

[2]

A. V. AsimitA. M. Badescu and K. C. Cheung, Optimal reinsurance in the presence of counterparty default risk, Insurance: Mathematics and Economics, 53 (2013), 690-697.  doi: 10.1016/j.insmatheco.2013.09.012.  Google Scholar

[3]

H. Assa, On optimal reinsurance policy with distortion risk measures and premiums, Insurance Mathematics and Economics, 61 (2015), 70-75.  doi: 10.1016/j.insmatheco.2014.11.007.  Google Scholar

[4]

K. J. Arrow, Uncertainty and the welfare economic of medical care, Uncertainty in Economics, (1978), 347–375. doi: 10.1016/B978-0-12-214850-7.50028-0.  Google Scholar

[5]

C. Bernard and M. Ludkovski, Impact of counterparty risk on the reinsurance market, North American Actuarial Journal, 16 (2012), 87-111.  doi: 10.1080/10920277.2012.10590634.  Google Scholar

[6]

K. Borch, An attempt to determine the optimal amount of stop loss reinsurance, Transactions of the 16th International Congress of Actuaries, 1 (1960), 597-610.   Google Scholar

[7]

J. CaiC. Lemieux and F. Liu, Optimal reinsurance with regulatory initial capital and default risk, Insurance: Mathematics and Economics, 57 (2014), 13-24.  doi: 10.1016/j.insmatheco.2014.04.006.  Google Scholar

[8]

J. Cai and K. S. Tan, Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measures, Astin Bulletin, 37 (2007), 93-112.  doi: 10.1017/S0515036100014756.  Google Scholar

[9]

J. CaiK. S. TanC. Weng and Y. Zhang, Optimal reinsurance under VaR and CTE risk measures, Insurance: Mathematics and Economics, 43 (2008), 185-196.  doi: 10.1016/j.insmatheco.2008.05.011.  Google Scholar

[10]

J. CaiC. Lemieux and F. Liu, Optimal reinsurance from the perspectives of both an insurer and a reinsurer, Astin Bulletin, 46 (2016), 815-849.  doi: 10.1017/asb.2015.23.  Google Scholar

[11]

J. Cai and C. Weng, Optimal reinsurance with expectile,, Scandinavian Actuarial Journal, (2016), 624–645. doi: 10.1080/03461238.2014.994025.  Google Scholar

[12]

K. C. Cheung, Optimal reinsurance revisited - a geometric approach, Astin Bulletin, 40 (2010), 221-239.  doi: 10.2143/AST.40.1.2049226.  Google Scholar

[13]

K. C. Cheung and A. Lo, Characterizations of optiaml reinsurance treaties: A cost-benefit approach, Scandinavian Actuarial Journal, 2017 (2017), 1-28.  doi: 10.1080/03461238.2015.1054303.  Google Scholar

[14]

K. C. Cheung and W. Wang, Optimal Reinsurance from the perspectives of both insurers and reinsurers under general distortion risk measures,, SSRN Electronic Journa, (2017), 31pp. doi: 10.2139/ssrn.3048626.  Google Scholar

[15]

Y. Chi and K. S. Tan, Optimal reinsurance with general premium principles, Insurance: Mathematics and Economics, 52 (2013), 180-189.  doi: 10.1016/j.insmatheco.2012.12.001.  Google Scholar

[16]

Y. Chi and K. S. Tan, Optimal reinsurance under VaR and CVaR risk measures: A simplified approach, Astin Bulletin, 41 (2011), 487-509.   Google Scholar

[17]

Y. Chi, Reinsurance arrangements minimizing the risk-adjusted value of an insurer's liability, Astin Bulletin, 42 (2012), 529-557.   Google Scholar

[18]

Y. Chi, Optimal reinsurance under variance related premium principles, Insurance: Mathematics and Economics, 51 (2012), 310-321.  doi: 10.1016/j.insmatheco.2012.05.005.  Google Scholar

[19]

Y. Chi and C. Weng, Optimal reinsurance subject to Vajda condition, Insurance: Mathematics and Economics, 53 (2013), 179-189.  doi: 10.1016/j.insmatheco.2013.05.002.  Google Scholar

[20]

J. DhaeneM. DenuitM. J. GoovaertsR. Kaas and D. Vyncke, The concept of comonotonicity in actuarial science and finance: Theory, Insurance: Mathematics and Economics, 31 (2002), 3-33.  doi: 10.1016/S0167-6687(02)00134-8.  Google Scholar

[21]

G. HubermanD. Mayers and C. W. Smith, Optimal insurance policy indemnity schedules, Bell Journal of Economics, 14 (1983), 415-426.  doi: 10.2307/3003643.  Google Scholar

[22]

W. JiangH. Hong and J. Ren, On Pareto-optimal reinsurance with constraints under distortion risk measures, European Actuarial Journal, 8 (2018), 215-243.  doi: 10.1007/s13385-017-0163-1.  Google Scholar

[23]

Z. Y. LuL. P. LiuQ. J. Shen and L. L. Meng, Optimal reinsurance under VaR and CTE risk measures when ceded loss function is concave, Communications in Statistics Theory and Methods, 43 (2014), 3223-3247.  doi: 10.1080/03610926.2012.716136.  Google Scholar

[24]

Z. Y. LuL. L. MengY. Wang and Q. Shen, Optimal reinsurance under VaR and TVaR risk measures in the presence of reinsurer's risk limit, Insurance: Mathematics and Economics, 68 (2016), 92-100.  doi: 10.1016/j.insmatheco.2016.03.001.  Google Scholar

[25]

A. Lo and Z. Tang, Pareto-optimal reinsurance policies in the presence of individual risk constraints, Annals of Operations Research, 274 (2019), 395-423.  doi: 10.1007/s10479-018-2820-4.  Google Scholar

[26] E. M. Stein and R. Shakarchi, Real Analysis: Measure Theory, Integration, and Hilbert Space, Princeton University Press, Princeton, 2005.   Google Scholar
[27]

K. S. TanC. Weng and Y. Zhang, VaR and CTE criteria for optimal quota-share and stop-loss reinsurance, North American Actuarial Journal, 13 (2009), 459-482.  doi: 10.1080/10920277.2009.10597569.  Google Scholar

[28]

S. Vajda, Minimum variance reinsurance, Astin Bulletin, 2 (1962), 257-260.  doi: 10.1017/S0515036100009995.  Google Scholar

[29]

W. Wang and X. Peng, Reinsurer's optimal reinsurance strategy with upper and lower premium constraint under distortion risk measures, Journal of Computational and Applied Mathematics, 315 (2017), 142-160.  doi: 10.1016/j.cam.2016.10.017.  Google Scholar

[30]

V. R. Young, Optimal insurance under Wang's premium principle, Insurance: Mathematics and Economics, 25 (1999), 109-122.  doi: 10.1016/S0167-6687(99)00012-8.  Google Scholar

[31]

Y. Zheng and W. Cui, Optimal reinsurance with premium constraint under distortion risk measures, Insurance: Mathematics and Economics, 59 (2014), 109-120.  doi: 10.1016/j.insmatheco.2014.08.010.  Google Scholar

[32]

Y. ZhengW. Cui and J. Yang, Optimal reinsurance under distortion risk measures and expected value premium principle for reinsurer, Journal of Systems Science and Complexity, 28 (2015), 122-143.  doi: 10.1007/s11424-014-2095-z.  Google Scholar

show all references

References:
[1]

A. V. AsimitA. M. Badescu and T. Verdonck, Optimal risk transfer under quantile-based risk measures, Insurance: Mathematics and Economics, 53 (2013), 252-265.  doi: 10.1016/j.insmatheco.2013.05.005.  Google Scholar

[2]

A. V. AsimitA. M. Badescu and K. C. Cheung, Optimal reinsurance in the presence of counterparty default risk, Insurance: Mathematics and Economics, 53 (2013), 690-697.  doi: 10.1016/j.insmatheco.2013.09.012.  Google Scholar

[3]

H. Assa, On optimal reinsurance policy with distortion risk measures and premiums, Insurance Mathematics and Economics, 61 (2015), 70-75.  doi: 10.1016/j.insmatheco.2014.11.007.  Google Scholar

[4]

K. J. Arrow, Uncertainty and the welfare economic of medical care, Uncertainty in Economics, (1978), 347–375. doi: 10.1016/B978-0-12-214850-7.50028-0.  Google Scholar

[5]

C. Bernard and M. Ludkovski, Impact of counterparty risk on the reinsurance market, North American Actuarial Journal, 16 (2012), 87-111.  doi: 10.1080/10920277.2012.10590634.  Google Scholar

[6]

K. Borch, An attempt to determine the optimal amount of stop loss reinsurance, Transactions of the 16th International Congress of Actuaries, 1 (1960), 597-610.   Google Scholar

[7]

J. CaiC. Lemieux and F. Liu, Optimal reinsurance with regulatory initial capital and default risk, Insurance: Mathematics and Economics, 57 (2014), 13-24.  doi: 10.1016/j.insmatheco.2014.04.006.  Google Scholar

[8]

J. Cai and K. S. Tan, Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measures, Astin Bulletin, 37 (2007), 93-112.  doi: 10.1017/S0515036100014756.  Google Scholar

[9]

J. CaiK. S. TanC. Weng and Y. Zhang, Optimal reinsurance under VaR and CTE risk measures, Insurance: Mathematics and Economics, 43 (2008), 185-196.  doi: 10.1016/j.insmatheco.2008.05.011.  Google Scholar

[10]

J. CaiC. Lemieux and F. Liu, Optimal reinsurance from the perspectives of both an insurer and a reinsurer, Astin Bulletin, 46 (2016), 815-849.  doi: 10.1017/asb.2015.23.  Google Scholar

[11]

J. Cai and C. Weng, Optimal reinsurance with expectile,, Scandinavian Actuarial Journal, (2016), 624–645. doi: 10.1080/03461238.2014.994025.  Google Scholar

[12]

K. C. Cheung, Optimal reinsurance revisited - a geometric approach, Astin Bulletin, 40 (2010), 221-239.  doi: 10.2143/AST.40.1.2049226.  Google Scholar

[13]

K. C. Cheung and A. Lo, Characterizations of optiaml reinsurance treaties: A cost-benefit approach, Scandinavian Actuarial Journal, 2017 (2017), 1-28.  doi: 10.1080/03461238.2015.1054303.  Google Scholar

[14]

K. C. Cheung and W. Wang, Optimal Reinsurance from the perspectives of both insurers and reinsurers under general distortion risk measures,, SSRN Electronic Journa, (2017), 31pp. doi: 10.2139/ssrn.3048626.  Google Scholar

[15]

Y. Chi and K. S. Tan, Optimal reinsurance with general premium principles, Insurance: Mathematics and Economics, 52 (2013), 180-189.  doi: 10.1016/j.insmatheco.2012.12.001.  Google Scholar

[16]

Y. Chi and K. S. Tan, Optimal reinsurance under VaR and CVaR risk measures: A simplified approach, Astin Bulletin, 41 (2011), 487-509.   Google Scholar

[17]

Y. Chi, Reinsurance arrangements minimizing the risk-adjusted value of an insurer's liability, Astin Bulletin, 42 (2012), 529-557.   Google Scholar

[18]

Y. Chi, Optimal reinsurance under variance related premium principles, Insurance: Mathematics and Economics, 51 (2012), 310-321.  doi: 10.1016/j.insmatheco.2012.05.005.  Google Scholar

[19]

Y. Chi and C. Weng, Optimal reinsurance subject to Vajda condition, Insurance: Mathematics and Economics, 53 (2013), 179-189.  doi: 10.1016/j.insmatheco.2013.05.002.  Google Scholar

[20]

J. DhaeneM. DenuitM. J. GoovaertsR. Kaas and D. Vyncke, The concept of comonotonicity in actuarial science and finance: Theory, Insurance: Mathematics and Economics, 31 (2002), 3-33.  doi: 10.1016/S0167-6687(02)00134-8.  Google Scholar

[21]

G. HubermanD. Mayers and C. W. Smith, Optimal insurance policy indemnity schedules, Bell Journal of Economics, 14 (1983), 415-426.  doi: 10.2307/3003643.  Google Scholar

[22]

W. JiangH. Hong and J. Ren, On Pareto-optimal reinsurance with constraints under distortion risk measures, European Actuarial Journal, 8 (2018), 215-243.  doi: 10.1007/s13385-017-0163-1.  Google Scholar

[23]

Z. Y. LuL. P. LiuQ. J. Shen and L. L. Meng, Optimal reinsurance under VaR and CTE risk measures when ceded loss function is concave, Communications in Statistics Theory and Methods, 43 (2014), 3223-3247.  doi: 10.1080/03610926.2012.716136.  Google Scholar

[24]

Z. Y. LuL. L. MengY. Wang and Q. Shen, Optimal reinsurance under VaR and TVaR risk measures in the presence of reinsurer's risk limit, Insurance: Mathematics and Economics, 68 (2016), 92-100.  doi: 10.1016/j.insmatheco.2016.03.001.  Google Scholar

[25]

A. Lo and Z. Tang, Pareto-optimal reinsurance policies in the presence of individual risk constraints, Annals of Operations Research, 274 (2019), 395-423.  doi: 10.1007/s10479-018-2820-4.  Google Scholar

[26] E. M. Stein and R. Shakarchi, Real Analysis: Measure Theory, Integration, and Hilbert Space, Princeton University Press, Princeton, 2005.   Google Scholar
[27]

K. S. TanC. Weng and Y. Zhang, VaR and CTE criteria for optimal quota-share and stop-loss reinsurance, North American Actuarial Journal, 13 (2009), 459-482.  doi: 10.1080/10920277.2009.10597569.  Google Scholar

[28]

S. Vajda, Minimum variance reinsurance, Astin Bulletin, 2 (1962), 257-260.  doi: 10.1017/S0515036100009995.  Google Scholar

[29]

W. Wang and X. Peng, Reinsurer's optimal reinsurance strategy with upper and lower premium constraint under distortion risk measures, Journal of Computational and Applied Mathematics, 315 (2017), 142-160.  doi: 10.1016/j.cam.2016.10.017.  Google Scholar

[30]

V. R. Young, Optimal insurance under Wang's premium principle, Insurance: Mathematics and Economics, 25 (1999), 109-122.  doi: 10.1016/S0167-6687(99)00012-8.  Google Scholar

[31]

Y. Zheng and W. Cui, Optimal reinsurance with premium constraint under distortion risk measures, Insurance: Mathematics and Economics, 59 (2014), 109-120.  doi: 10.1016/j.insmatheco.2014.08.010.  Google Scholar

[32]

Y. ZhengW. Cui and J. Yang, Optimal reinsurance under distortion risk measures and expected value premium principle for reinsurer, Journal of Systems Science and Complexity, 28 (2015), 122-143.  doi: 10.1007/s11424-014-2095-z.  Google Scholar

[1]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[2]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[3]

Giuseppe Capobianco, Tom Winandy, Simon R. Eugster. The principle of virtual work and Hamilton's principle on Galilean manifolds. Journal of Geometric Mechanics, 2021  doi: 10.3934/jgm.2021002

[4]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[5]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[6]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[7]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[8]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[9]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

[10]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[11]

Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020179

[12]

Yu Yuan, Zhibin Liang, Xia Han. Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021003

[13]

Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008

[14]

Nan Zhang, Linyi Qian, Zhuo Jin, Wei Wang. Optimal stop-loss reinsurance with joint utility constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 841-868. doi: 10.3934/jimo.2020001

[15]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[16]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[17]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[18]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[19]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[20]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (55)
  • HTML views (219)
  • Cited by (0)

Other articles
by authors

[Back to Top]