\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Two-period pricing and ordering decisions of perishable products with a learning period for demand disruption

  • *Corresponding author: Dong Lei

    *Corresponding author: Dong Lei
Abstract Full Text(HTML) Figure(11) / Table(3) Related Papers Cited by
  • In this paper, we develop a two-period inventory model of perishable products with considering the random demand disruption. Faced with the random demand disruption, the firm has two order opportunities: the initial order at the beginning of selling season (i.e., Period 1) is intended to learn the real information of the disrupted demand. When the information of disruption is realized, the firm places the second order, and also decides how many unsold units should be carried into the rest of selling season (i.e., Period 2). The firm may offer two products of different perceived quality in Period 2, and therefore it must trade-off between the quantity of carry-over units and the quantity of young units when the carry-over units cannibalize the sales of young units. Meanwhile, there is both price competition and substitutability between young and old units. We find that the quantity of young units ordered in Period 2 decreases with the quality of units ordered in Period 1, while the pricing of young units is independent of the quality level of old units. However, both the surplus inventory level and the pricing of old units monotonically increase with their quality. We also investigate the influence of two demand disruption scenarios on the optimal order quantity and the optimal pricing when considering different quality situations. We find that in the continuous random disruption scenario, the information value of disruption to the firm is only related to the disruption mean, while in the discrete random disruption scenario, it is related to both unit purchase cost of young units and the disruption levels.

    Mathematics Subject Classification: Primary: 97M40, 90B50; Secondary: 91A10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Graphical representation of the two-period inventory system

    Figure 2.  The optimal solution regions on the disrupted demand, where M is sufficiently large number

    Figure 3.  Optimal order quantities versus low disruption amount

    Figure 4.  Optimal prices versus low disruption amount

    Figure 5.  Order quantity, $ \tilde{x}_{1H} $ versus disruption amounts

    Figure 6.  Order quantity, $ \tilde{x}_{1L} $ versus disruption amounts

    Figure 7.  Optimal pricing, $ \tilde{P}_{1H} $ versus disruption amounts

    Figure 8.  Optimal pricing, $ \tilde{P}_{1L} $ versus disruption amounts

    Figure 9.  Optimal expected profit, $ \textbf{E}[\tilde{\Pi}_{12}^{B*}] $ versus disruption amounts

    Figure 10.  Continuous disruption versus discrete disruption $ \Delta R_H = 8 $, $ \Delta R_L = -8 $ and $ \beta = 0.5 $

    Figure 11.  Continuous disruption versus discrete disruption $ \Delta R_H = 8 $, $ \Delta R_L = -8 $ and $ \overline{\Delta R} = 0 $

    Table 1.  Notations used in the stochastic model

    Parameters
    $ R $ Market potential in Period 1, $ R>c $
    $ \Delta R $ Random disrupted amount in Period 1, i.e., continuous or
    discrete random variable
    $ \overline{\Delta R} $ Mean of random disrupted amount $ \Delta R $
    $ \overline R $ Determined market potential in Period 2, $ \overline R>c $
    $ h $ Unit cost to carry old products
    $ q $ Perceived quality of old units when the young units go
    on sale, $ 0\leq q \leq1 $
    $ c $ Unit cost to purchase young products
    $ c_u $ Unit penalty cost for a unit increased quantity, $ c_u \geq 0 $
    $ c_s $ Unit penalty cost for a unit decreased quantity, $ c_s \geq 0 $
    $ P_1 $ Retail price of young products in Period 1
    $ P_2^n $ Retail price of young products in Period 2
    $ P_2^o $ Retail price of old products in Period 2
    Decision Variables
    $ x_i $ Order quantity of young products in Period $ i $, $ i=1, 2 $
    $ E $ Reorder point, or ending-stock level at the end of Period 1,
    where $ E \geq 0 $
    Functions
    $ \Pi_2(x_2, E) $ Profit of Period 2 given the surplus inventory $ E $ and the
    reorder quantity $ x_2 $
    $ \Pi_{12}(x_1) $ Expected profit of both periods given the initial order
    quantity $ x_1 $
     | Show Table
    DownLoad: CSV

    Table 2.  Optimal decisions and profits of Period 2 based on the perceived quality of old inventory

    Cases $ x_2^* $ $ E^* $ $ P_2^{n*} $ $ P_2^{o*} $ $ \Pi_2(x_2^*, E^*) $
    $ q \leq \frac{h}{c} $ $ \frac{\overline R-c}{2} $ $ 0 $ $ \frac{\overline R+c}{2} $ NA} $ \frac{(\overline R-c)^2}{4} $
    $ \frac{h}{c}<q<\frac{\overline R-c+h}{\overline R} $ $ \frac{(1-q)\overline R-c+h}{2(1-q)} $ $ \frac{cq-h}{2q(1-q)} $ $ \frac{\overline R+c}{2} $ $ \frac{q\overline R+h}{2} $ $ \frac{{\overline R}^2-2\overline Rc}{4}+\frac{2qch-qc^2-h^2}{4q(q-1)} $
    $ q \geq \frac{\overline R-c+h}{\overline R} $ $ 0 $ $ \frac{q\overline R-h}{2q} $ NA} $ \frac{q\overline R+h}{2} $ $ \frac{(q\overline R-h)^2}{4q} $
     | Show Table
    DownLoad: CSV

    Table 3.  Optimal decisions and profits of Period 1 based on the perceived quality of old inventory

    $ q $ $ E^* $ $ x_1^* $ $ P_1^* $ $ \Pi_{12}(x_1^*) $
    $ q \leq \frac{h}{c} $ 0 $ \frac{R-c}{2} $ $ \frac{R+c}{2} $ $ \frac{(1+\rho)(R-c)^2}{4} $
    $ \frac{h}{c}<q<\frac{R-c+h}{R} $ $ \frac{cq-h}{2q(1-q)} $ $ \frac{R-c+E^*}{2} $ $ \frac{R+c-E^*}{2} $ $ \frac{(R-c-E^*)^2}{4}-cE^*+\rho\Pi_2^*(E^*) $
    $ q \geq \frac{R-c+h}{R} $ $ \frac{qR-h}{2q} $ $ \frac{R-c+E^*}{2} $ $ \frac{R+c-E^*}{2} $ $ \frac{(R-c-E^*)^2}{4}-cE^*+\rho\Pi_2^*(E^*) $
     | Show Table
    DownLoad: CSV
  • [1] Z. AzadiS. D. EksiogluB. Eksioglu and G. Palak, Stochastic optimization models for joint pricing and inventory replenishment of perishable products, Computers & Industrial Engineering, 127 (2019), 625-642.  doi: 10.1016/j.cie.2018.11.004.
    [2] Y. Aviv, The effect of collaborative forecasting on supply chain performance, Management science, 47 (2001), 1331-1440.  doi: 10.1287/mnsc.47.10.1326.10260.
    [3] İ. S. BakalZ. P. Bayındır and D. E. Emer, Value of disruption information in an EOQ environment, European J. Oper. Res., 263 (2017), 446-460.  doi: 10.1016/j.ejor.2017.04.045.
    [4] M. A. BegenH. Pun and X. Yan, Supply and demand uncertainty reduction efforts and cost comparison, International Journal of Production Economics, 180 (2016), 125-134.  doi: 10.1016/j.ijpe.2016.07.013.
    [5] A. Bensoussan, Q. Feng, S. Luo and S.P. Sethi, Evaluating long-term service performance under short-term forecast updates, International Journal of Production Research, (2003), 1–14.
    [6] E. Cao, C. Wan and M. Lai, Coordination of a supply chain with one manufacturer and multiple competing retailers under simultaneous demand and cost disruptions, International Journal of Production Economics, 141 (2013), 425–433.
    [7] E. P. ChewC. Lee and R. Liu, Joint inventory allocation and pricing decisions for perishable products, International Journal of Production Economics, 120 (2009), 139-150.  doi: 10.1016/j.ijpe.2008.07.018.
    [8] J. ChenM. DongY. Rong and L. Yang, Dynamic pricing for deteriorating products with menu cost, Omega, 75 (2018), 13-26.  doi: 10.1016/j.omega.2017.02.001.
    [9] K. B. Chen and P. Zhuang, Disruption management for a dominant retailer with constant demand-stimulating service cost, Computers & Industrial Engineering, 61 (2011), 936-946.  doi: 10.1016/j.cie.2011.06.006.
    [10] K. B. Chen and T. J. Xiao, Production planning and backup sourcing strategy of a buyer-dominant supply chain with random yield and demand, International Journal of Systems Science, 46 (2015), 2799-2817.  doi: 10.1080/00207721.2013.879234.
    [11] K. B. Chen, R. Xu and H. Fang, Information disclosure model under supply chain competition with asymmetric demand disruption, Asia-Pacific Journal of Operational Research, 33 (2016), 1650043, 35pp. doi: 10.1142/S0217595916500433.
    [12] Z. X. Chen, Optimization of production inventory with pricing and promotion effort for a single-vendor multi-buyer system of perishable products, International Journal of Production Economics, 203 (2018), 333-349. 
    [13] P. Chintapalli, Simultaneous pricing and inventory management of deteriorating perishable products, Annals of Operations Research, 229 (2015), 287–301. doi: 10.1007/s10479-014-1753-9.
    [14] J. Danusantoso and S. A. Moses, Disruption management in a two-period three-tier electronics supply chain, Cogent Business & Management, 3 (2016), 1137138. doi: 10.1080/23311975.2015.1137138.
    [15] P. S. DesaiO. Koenigsberg and D. Purohit, Research note-the role of production lead time and demand uncertainty in marketing durable goods, Management Science, 53 (2007), 150-158.  doi: 10.1287/mnsc.1060.0599.
    [16] L. DuongL. Wood and W. Wang, A review and reflection on inventory management of perishable products in a single-echelon model, International Journal of Operational Research, 31 (2018), 313-329.  doi: 10.1504/IJOR.2018.089734.
    [17] C. Y. Dye, Optimal joint dynamic pricing, advertising and inventory control model for perishable items with psychic stock effect, European Journal of Operational Research, 283 (2020), 576–587. doi: 10.1016/j.ejor.2019.11.008.
    [18] A. Ehrenberg and G. Goodhardt, New brands: Near-instant loyalty, Journal of Targeting, Measurement & Analysis for Marketing, 16 (2001), 607–617.
    [19] W. Elmaghraby and P. Keskinocak, Dynamic pricing in the presence of inventory considerations: Research overview, current practices, and future directions, Management Science, 49 (2003), 1287-1309. 
    [20] T. FanC. Xu and F. Tao, Dynamic pricing and replenishment policy for fresh produce, Computers & Industrial Engineering, 139 (2020), 106-127. 
    [21] L. FengJ. Zhang and W. Tang, Dynamic joint pricing and production policy for perishable products, International Transactions in Operational Research, 25 (2018), 2031-2051.  doi: 10.1111/itor.12239.
    [22] L. FengY. L. Chan and L. E. Cárdenas-Barrón, Pricing and lot-sizing polices for perishable goods when the demand depends on selling price, displayed stocks, and expiration date, International Journal of Production Economics, 185 (2017), 11-20. 
    [23] M. E. Ferguson and O. Koenigsberg, How should a firm manage deteriorating inventory?, Production and Operations Management, 16 (2007), 306-321.  doi: 10.1111/j.1937-5956.2007.tb00261.x.
    [24] Y. He and S. Wang, Analysis of production-inventory system for deteriorating items with demand disruption, International Journal of Production Research, 50 (2012), 4580-4592.  doi: 10.1080/00207543.2011.615351.
    [25] Z. HeG. HanT. C. E. ChengB. Fan and J. Dong, Evolutionary food quality and location strategies for restaurants in competitive online-to-offline food ordering and delivery markets: An agent-based approach, International Journal of Production Economics, 215 (2019), 61-72.  doi: 10.1016/j.ijpe.2018.05.008.
    [26] A. Herbon, Potential additional profits of selling a perishable product due to implementing price discrimination versus implementation costs, International Transactions in Operational Research, 26 (2019), 1402-1421.  doi: 10.1111/itor.12426.
    [27] S. HuangC. Yang and X. Zhang, Pricing and production decisions in dual-channel supply chains with demand disruptions, Computers & Industrial Engineering, 62 (2012), 70-83.  doi: 10.1016/j.cie.2011.08.017.
    [28] X. JiJ. Sun and Z. Wang, Turn bad into good: Using transshipment-before-buyback for disruptions of stochastic demand, International Journal of Production Economics, 185 (2017), 150-161.  doi: 10.1016/j.ijpe.2016.12.019.
    [29] A. Kara and I. Dogan, Reinforcement learning approaches for specifying ordering policies of perishable inventory systems, Expert Systems with Applications, 91 (2018), 150-158.  doi: 10.1016/j.eswa.2017.08.046.
    [30] M. LashgariA. A. Taleizadeh and S. S. Sana, An inventory control problem for deteriorating items with back-ordering and financial considerations under two levels of trade credit linked to order quantity, Journal of Industrial & Management Optimization, 12 (2016), 1091-1119.  doi: 10.3934/jimo.2016.12.1091.
    [31] C. Y. Lee and R. Yang, Supply chain contracting with competing suppliers under asymmetric information, IIE Transactions, 45 (2013), 25-52.  doi: 10.1080/0740817X.2012.662308.
    [32] B. Li, C. Yang and S. Huang, Study on supply chain disruption management under service level dependent demand, Journal of Networks, 9 (2014), 1432.
    [33] R. Li and J. T. Teng, Pricing and lot-sizing decisions for perishable goods when demand depends on selling price, reference price, product freshness, and displayed stocks, European Journal of Operational Research, 270 (2018), 1099-1108.  doi: 10.1016/j.ejor.2018.04.029.
    [34] S. K. LiJ. X. Zhang and W. S. Tang, Joint dynamic pricing and inventory control policy for a stochastic inventory system with perishable products, International Journal of Production Research, 53 (2015), 2937-3950.  doi: 10.1080/00207543.2014.961206.
    [35] T. Li and H. Zhang, Information sharing in a supply chain with a make-to-stock manufacturer, Omega, 50 (2015), 115-125.  doi: 10.1016/j.omega.2014.08.001.
    [36] Y. LiA. Lim and B. Rodrigues, Note-Pricing and inventory control for a perishable product, Manufacturing & Service Operations Management, 11 (2009), 538-542. 
    [37] W. LiuY. LiuD. ZhuY. Wang and Z. Liang, The influences of demand disruption on logistics service supply chain coordination: A comparison of three coordination modes, International Journal of Production Economics, 179 (2016), 59-76.  doi: 10.1016/j.ijpe.2016.05.022.
    [38] I. Mallidis, D. Vlachos, V. Yakavenka and Z. Eleni, Development of a single period inventory planning model for perishable product redistribution, Annals of Operations Research, (2018), 1–17. doi: 10.1007/s10479-018-2948-2.
    [39] S. Minner and S. Transchel, Order variability in perishable product supply chains, European Journal of Operational Research, 260 (2017), 93-107.  doi: 10.1016/j.ejor.2016.12.016.
    [40] S. Minner and S. Transchel, Periodic review inventory-control for perishable products under service-level constraints, OR spectrum, 32 (2010), 979-996.  doi: 10.1007/s00291-010-0196-1.
    [41] C. Muriana, An EOQ model for perishable products with fixed shelf life under stochastic demand conditions, European Journal of Operational Research, 255 (2016), 388–396. doi: 10.1016/j.ejor.2016.04.036.
    [42] X. Qi, J. F. Bard and G. Yu, Supply chain coordination with demand disruptions, Omega, 32 (2004), 301–312. doi: 10.1016/j.omega.2003.12.002.
    [43] P. E. Rossi and G. M. Allenby, Bayesian statistics and marketing, Marketing Science, 49 (2003), 230-230. 
    [44] M. R. G. Samani and S. M. Hosseini-Motlagh, An enhanced procedure for managing blood supply chain under disruptions and uncertainties, Annals of Operations Research, 283 (2019), 1413-1462.  doi: 10.1007/s10479-018-2873-4.
    [45] H. Scarf, Bayes solutions of the statistical inventory problem, Annals of Mathematical Statistics, 30 (1959), 490-508.  doi: 10.1214/aoms/1177706264.
    [46] B. Shen, T. M. Choi and S. Minner, A review on supply chain contracting with information considerations: Information updating and information asymmetry, International Journal of Production Research, (2018), 1–39.
    [47] N. TashakkorS. H. Mirmohammadi and M. Iranpoor, Joint optimization of dynamic pricing and replenishment cycle considering variable non-instantaneous deterioration and stock-dependent demand, Computers & Industrial Engineering, 123 (2018), 232-241.  doi: 10.1016/j.cie.2018.06.029.
    [48] T. S. Vaughan, A model of the perishable inventory system with reference to consumer-realized product expiration, Journal of the Operational Research Society, 45 (1994), 519-528. 
    [49] T. J. Xiao and X. T. Qi, Price competition, cost and demand disruptions and coordination of a supply chain with one manufacturer and two competing retailers, Omega, 36 (2008), 741-753.  doi: 10.1016/j.omega.2006.02.008.
    [50] X. Xu and X. Cai, Price and delivery-time competition of perishable products: Existence and uniqueness of Nash equilibrium, Journal of Industrial & Management Optimization, 4 (2008), 843-859.  doi: 10.3934/jimo.2008.4.843.
    [51] M. Xue and G. Zhu, Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items, Journal of Industrial & Management Optimization, (2019). doi: 10.3934/jimo.2019126.
    [52] G. Yi, X. Chen and C. Tan, Optimal pricing of perishable products with replenishment policy in the presence of strategic consumers, Journal of Industrial & Management Optimization, 15 (2019), 1579–1597. doi: 10.3934/jimo.2018112.
    [53] J. ZhangJ. Zhang and G. Hua, Multi-period inventory games with information update, International Journal of Production Economics, 174 (2016), 119-127.  doi: 10.1016/j.ijpe.2016.01.017.
    [54] Y. Zhao, T. M. Choi, T. C. E. Cheng and S. Wang, Supply option contracts with spot market and demand information updating, European Journal of Operational Research, 266 (2018), 1062–1071. doi: 10.1016/j.ejor.2017.11.001.
    [55] J. Zhou, R. Zhao and B. Wang, Behavior-based price discrimination in a dual-channel supply chain with retailer's information disclosure, Electronic Commerce Research and Applications, 39 (2020), 100916. doi: 10.1016/j.elerap.2019.100916.
    [56] J. ZhouR. Zhao and W. Wang, Pricing decision of a manufacturer in a dual-channel supply chain with asymmetric information, European Journal of Operational Research, 278 (2019), 809-820.  doi: 10.1016/j.ejor.2019.05.006.
  • 加载中

Figures(11)

Tables(3)

SHARE

Article Metrics

HTML views(1286) PDF downloads(475) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return