Advanced Search
Article Contents
Article Contents

Air-Conditioner Group Power Control Optimization for PV integrated Micro-grid Peak-shaving

  • * Corresponding author: Zhaohui Cen

    * Corresponding author: Zhaohui Cen 
Abstract Full Text(HTML) Figure(15) / Table(2) Related Papers Cited by
  • Heating, Ventilation, and Air-Condition (HVAC) systems are considered to be one of the essential applications for modern human life comfort. Due to global warming and population growth, the demand for such HVAC applications will continue to increase, especially in arid areas countries like the Arabian Gulf region. HVAC systems' energy consumption is very high and accounts for up to 70% of the total load consumption in some rapidly growing GCC countries such as Qatar. Additionally, the local extremely hot weather conditions usually lead to typical power demand peak issues that require adequate mitigation measures to ensure grid stability. In this paper, a novel control scheme for a combined group of Air-Conditioners is proposed as a peak-shaving strategy to address high power demand issues for Photo-Voltaic(PV)-integrated micro-grid applications. Using the local daily ambient temperature as input, the AC group control optimization is formulated as a Mixed-Integer Quadratic Programming (MIQP) problem. Under an acceptable range of indoor temperatures, the units in the same AC group are coordinately controlled to generate desired power consumption performance that is capable of shaving load peaks for both power consumption and PV generation. Finally, various simulations are performed that demonstrate the effectiveness of the proposed control strategy.

    Mathematics Subject Classification: Primary: 49N90, 49N10; Secondary: 93C95.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Baseline on-off AC control temperature profile

    Figure 2.  AC Group Control ICT hardware infrastructure diagram

    Figure 3.  Flowchart for AC group control program

    Figure 4.  Outdoor Temperature in One day measured in Qatar

    Figure 5.  On-Off Control Power profile subjected to different time delay

    Figure 6.  Indoor Temperature Control profile Comparison

    Figure 7.  Indoor temperature profiles of load-side peak shaving (The different curves are for the considered 40 AC units)

    Figure 8.  Individual AC power control logic of load-side peak shaving

    Figure 9.  Load-side shaving by AC group control

    Figure 10.  Indoor temperature profiles under binary Mode

    Figure 11.  Individual AC power control logic for PV peak shaving scenario under binary mode

    Figure 12.  PV side Peak-shaving by AC group control under binary Mode

    Figure 13.  Indoor temperature profiles under Ternary Mode (0-1-2)

    Figure 14.  Individual AC power control logic under Ternary Mode (0-1-2)

    Figure 15.  PV side Peak-shaving by AC group control with Ternary Mode (0-1-2)

    Table 1.  House thermal model parameters definition

    Parameter Definition
    $ {T}_{indoor} $ Indoor temperature of the house
    $ {T}_{outdoor} $ Outdoor temperature of the house
    $ {{\dot{Q}}_{d}} $ Heat flow from outdoor to the house
    $ {{\dot{Q}}_{e}} $ Cooling Energy by AC system
    $ R $ Thermal resistance from outdoor to the house
    $ m $ Mass of the indoor air
    $ {{C}_{p}} $ Heat capacities of the room air
     | Show Table
    DownLoad: CSV

    Table 2.  Parameters values of the thermal model and optimization

    Parameter Value Parameter Value
    A -2.00123e-4 $ J_{SW} $ 2
    B 4.4028e-6 Cp($ J/Kg^oC $) 1005
    E 0.002*$ T_{ref} $ $ m(kg) $ 222
    R($ ^oC/W $) 0.022 $ Q $ 300
     | Show Table
    DownLoad: CSV
  • [1] M. Al-Azba, Z. Cen, Y. Remond and S. Ahzi, An optimal air-conditioner on-off control scheme under extremely hot weather conditions, Energies, 13 (2020), 1021. doi: 10.3390/en13051021.
    [2] G. ChaudharyP. ShrivastavaM. Alam and Y. Rafat, Performance optimization and development of an efficient solar photovoltaic based inverter air conditioning system, Smart Science, 6 (2018), 188-196.  doi: 10.1080/23080477.2018.1437322.
    [3] M. Di Felice, L. Piroddi, A. Leva and A. Boer, Adaptive temperature control of a household refrigerator, in 2009 American Control Conference, IEEE, 2009,889–894. doi: 10.1109/ACC.2009.5159862.
    [4] J. Dong, Stochastic and optimal distributed control for energy optimization and spatially invariant systems.
    [5] J. Dong, S. M. Djouadi, T. Kuruganti and M. M. Olama, Augmented optimal control for buildings under high penetration of solar photovoltaic generation, in 2017 IEEE Conference on Control Technology and Applications (CCTA), IEEE, 2017, 2158–2163. doi: 10.1109/CCTA.2017.8062772.
    [6] J. Dong, M. M. Olama, T. Kuruganti, J. Nutaro, Y. Xue, I. Sharma and S. M. Djouadi, Adaptive building load control to enable high penetration of solar photovoltaic generation, in 2017 IEEE Power & Energy Society General Meeting, IEEE, 2017, 1–5. doi: 10.1109/PESGM.2017.8274533.
    [7] M. S. Elliott, Decentralized Model Predictive Control of a Multiple Evaporator HVAC System, PhD thesis, Texas A & M University, 2010.
    [8] R. Godina, E. M. Rodrigues, E. Pouresmaeil and J. P. Catalão, Home hvac energy management and optimization with model predictive control, in 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I & CPS Europe), IEEE, 2017, 1–5. doi: 10.1109/EEEIC.2017.7977766.
    [9] R. GodinaE. M. RodriguesE. Pouresmaeil and J. P. Catalão, Optimal residential model predictive control energy management performance with pv microgeneration, Computers & Operations Research, 96 (2018), 143-156.  doi: 10.1016/j.cor.2017.12.003.
    [10] R. Godina, E. M. Rodrigues, M. Shafie-khah, E. Pouresmaeil and J. P. Catalão, Energy optimization strategy with model predictive control and demand response, in 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I & CPS Europe), IEEE, 2017, 1–5. doi: 10.1109/EEEIC.2017.7977767.
    [11] G. Huang, Model predictive control of vav zone thermal systems concerning bi-linearity and gain nonlinearity, Control Engineering Practice, 19 (2011), 700-710.  doi: 10.1016/j.conengprac.2011.03.005.
    [12] N. JinD. L. DanilovP. M. Van den Hof and M. Donkers, Parameter estimation of an electrochemistry-based lithium-ion battery model using a two-step procedure and a parameter sensitivity analysis, International Journal of Energy Research, 42 (2018), 2417-2430.  doi: 10.1002/er.4022.
    [13] H. LüL. JiaS. Kong and Z. Zhang, Predictive functional control based on fuzzy ts model for hvac systems temperature control, Journal of Control Theory and Applications, 5 (2007), 94-98. 
    [14] X. MaE. D. McCormack and Y. Wang, Processing commercial global positioning system data to develop a web-based truck performance measures program, Transportation Research Record, 2246 (2011), 92-100.  doi: 10.3141/2246-12.
    [15] J. Rehrl and M. Horn, Temperature control for hvac systems based on exact linearization and model predictive control, in 2011 IEEE International Conference on Control Applications (CCA), IEEE, 2011, 1119–1124. doi: 10.1109/CCA.2011.6044437.
    [16] E. RodriguesR. GodinaE. PouresmaeilJ. Ferreira and J. Catalão, Domestic appliances energy optimization with model predictive control, Energy Conversion and Management, 142 (2017), 402-413. 
    [17] M. SongC. Gao and W. Su, Modeling and controlling of air-conditioning load for demand response applications, Autom Electr Power Syst, 40 (2016), 158-167. 
    [18] M. SongC. GaoH. Yan and J. Yang, Thermal battery modeling of inverter air conditioning for demand response, IEEE Transactions on Smart Grid, 9 (2017), 5522-5534.  doi: 10.1109/TSG.2017.2689820.
    [19] X.-C. XiA.-N. Poo and S.-K. Chou, Support vector regression model predictive control on a hvac plant, Control Engineering Practice, 15 (2007), 897-908.  doi: 10.1016/j.conengprac.2006.10.010.
    [20] G. XiaD. Zhuang and G. Ding, Thermal management solution for enclosed controller used in inverter air conditioner based on heat pipe heat sink, International Journal of Refrigeration, 99 (2019), 69-79.  doi: 10.1016/j.ijrefrig.2018.12.020.
    [21] Q. Zhang, Q. Guo and Y. Yu, Research on the load characteristics of inverter and constant speed air conditioner and the influence on distribution network, in 2016 China International Conference on Electricity Distribution (CICED), IEEE, 2016, 1–4. doi: 10.1109/CICED.2016.7575908.
  • 加载中
Open Access Under a Creative Commons license




Article Metrics

HTML views(1342) PDF downloads(289) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint