• Previous Article
    Optimal preventive "maintenance-first or -last" policies with generalized imperfect maintenance models
  • JIMO Home
  • This Issue
  • Next Article
    An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts
January  2021, 17(1): 485-500. doi: 10.3934/jimo.2020117

Some properties of nonconvex oriented distance function and applications to vector optimization problems

1. 

School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China

2. 

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

3. 

College of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, China

* Corresponding author: Liping Tang

Received  August 2019 Revised  January 2020 Published  June 2020

In this paper, we study some interesting properties of nonconvex oriented distance function. In particular, we present complete characterizations of monotonicity properties of oriented distance function. Moreover, the Clark subdifferentials of nonconvex oriented distance function are explored in the solid case. As applications, fuzzy necessary optimality conditions for approximate solutions to vector optimization problems are provided.

Citation: Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117
References:
[1]

Q. H. AnsariE. Köbis and P. K. Sharma, Characterizations of multiobjective robustness via oriented distance function and image space analysis, J. Optim. Theory Appl., 181 (2019), 817-839.  doi: 10.1007/s10957-019-01505-y.  Google Scholar

[2]

Y. Araya, Four types of nonlinear scalarizations and some applications in set optimization, Nonlinear Anal., 75 (2012), 3821-3835.  doi: 10.1016/j.na.2012.02.004.  Google Scholar

[3]

R. I. BoţS.-M. Grad and G. Wanka, A general approach for studying duality in multiobjective optimization, Math. Methods Oper. Res., 65 (2007), 417-444.  doi: 10.1007/s00186-006-0125-x.  Google Scholar

[4]

J. V. BurkeM. C. Ferris and M. Qian, On the Clarke subdifferential of the distance function of a closed set, J. Math. Anal. Appl., 166 (1992), 199-213.  doi: 10.1016/0022-247X(92)90336-C.  Google Scholar

[5]

G.-Y. Chen, X. Huang and X. Yang, Vector Optimization. Set-Valued and Variational Analysis, Lecture Notes in Economics and Mathematical Systems, 541, Springer-Verlag, Berlin, 2005. doi: 10.1007/3-540-28445-1.  Google Scholar

[6]

F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, Graduate Texts in Mathematics, 264, Springer, London, 2013. doi: 10.1007/978-1-4471-4820-3.  Google Scholar

[7]

M.-O. Czarnecki and L. Thibault, Sublevel representations of epi-Lipschitz sets and other properties, Math. Program., 168 (2018), 555-569.  doi: 10.1007/s10107-016-1070-y.  Google Scholar

[8]

M. C. Delfour and J.-P. Zolésio, Shape analysis via oriented distance functions, J. Funct. Anal., 123 (1994), 129-201.  doi: 10.1006/jfan.1994.1086.  Google Scholar

[9]

M. DureaJ. Dutta and C. Tammer, Lagrange multipliers for $\epsilon$-Pareto solutions in vector optimization with nonsolid cones in Banach spaces, J. Optim. Theory Appl., 145 (2010), 196-211.  doi: 10.1007/s10957-009-9609-1.  Google Scholar

[10]

M. DureaR. Strugariu and C. Tammer, Scalarization in geometric and functional vector optimization revisited, J. Optim. Theory Appl., 159 (2013), 635-655.  doi: 10.1007/s10957-013-0360-2.  Google Scholar

[11]

J. Dutta and C. Tammer, Lagrangian conditions for vector optimization in Banach spaces, Math. Methods Oper. Res., 64 (2006), 521-540.  doi: 10.1007/s00186-006-0079-z.  Google Scholar

[12]

Y. Gao and X.-M. Yang, Properties of the nonlinear scalar functional and its applications to vector optimization problems, J. Global Optim., 73 (2019), 869-889.  doi: 10.1007/s10898-018-0725-z.  Google Scholar

[13]

Y. GaoX. Yang and K. L. Teo, Optimality conditions for approximate solutions of vector optimization problems, J. Ind. Manag. Optim., 7 (2011), 483-496.  doi: 10.3934/jimo.2011.7.483.  Google Scholar

[14]

C. Gerth and P. Weidner, Nonconvex separation theorems and some applications in vector optimization, J. Optim. Theory Appl., 67 (1990), 297-320.  doi: 10.1007/BF00940478.  Google Scholar

[15]

C. GutiérrezB. JiménezE. Miglierina and E. Molho, Scalarization in set optimization with solid and nonsolid ordering cones, J. Global Optim., 61 (2015), 525-552.  doi: 10.1007/s10898-014-0179-x.  Google Scholar

[16]

C. GutiérrezB. Jiménez and V. Novo, A unified approach and optimality conditions for approximate solutions of vector optimization problems, SIAM J. Optim., 17 (2006), 688-710.  doi: 10.1137/05062648X.  Google Scholar

[17]

C. GutiérrezB. Jiménez and V. Novo, Improvement sets and vector optimization, European J. Oper. Res., 223 (2012), 304-311.  doi: 10.1016/j.ejor.2012.05.050.  Google Scholar

[18]

C. Gutiérrez, B. Jiménez and V. Novo, Nonlinear scalarizations of set optimization problems with set orderings, in Set Optimization and Applications - The State of the Art, Springer Proc. Math. Stat., 151, Springer, Heidelberg, 2015, 43–63. doi: 10.1007/978-3-662-48670-2_2.  Google Scholar

[19]

C. GutiérrezE. MiglierinaE. Molho and V. Novo, Pointwise well-posedness in set optimization with cone proper sets, Nonlinear Anal., 75 (2012), 1822-1833.  doi: 10.1016/j.na.2011.09.028.  Google Scholar

[20]

C. GutiérrezV. NovoJ. L. Ródenas-Pedregosa and T. Tanaka, Nonconvex separation functional in linear spaces with applications to vector equilibria, SIAM J. Optim., 26 (2016), 2677-2695.  doi: 10.1137/16M1063575.  Google Scholar

[21]

J.-B. Hiriart-Urruty, Tangent cones, generalized gradients and mathematical programming in Banach spaces, Math. Oper. Res., 4 (1979), 79-97.  doi: 10.1287/moor.4.1.79.  Google Scholar

[22]

J.-B. Hiriart-Urruty, New concepts in nondifferentiable programming. Analyse non convexe, Bull. Soc. Math. France Mém., (1979), 57–85.  Google Scholar

[23]

B. JiménezV. Novo and A. Vílchez, A set scalarization function based on the oriented distance and relations with other set scalarizations, Optimization, 67 (2018), 2091-2116.  doi: 10.1080/02331934.2018.1533554.  Google Scholar

[24]

B. JiménezV. Novo and A. Vílchez, Characterization of set relations through extensions of the oriented distance, Math. Methods Oper. Res., 91 (2020), 89-115.  doi: 10.1007/s00186-019-00661-1.  Google Scholar

[25]

A. A. Khan, C. Tammer and C. Zălinescu, Set-Valued Optimization. An Introduction with Applications, Vector Optimization, Springer, Heidelberg, 2015. doi: 10.1007/978-3-642-54265-7.  Google Scholar

[26]

C. S. Lalitha and P. Chatterjee, Stability and scalarization in vector optimization using improvement sets, J. Optim. Theory Appl., 166 (2015), 825-843.  doi: 10.1007/s10957-014-0686-4.  Google Scholar

[27]

G. H. LiS. J. Li and M. X. You, Relationships between the oriented distance functional and a nonlinear separation functional, J. Math. Anal. Appl., 466 (2018), 1109-1117.  doi: 10.1016/j.jmaa.2018.06.046.  Google Scholar

[28]

C. G. LiuK. F. Ng and W. H. Yang, Merit functions in vector optimization, Math. Program., 119 (2009), 215-237.  doi: 10.1007/s10107-008-0208-y.  Google Scholar

[29]

H. LuoX. Wang and B. Lukens, Variational analysis on the signed distance functions, J. Optim. Theory Appl., 180 (2019), 751-774.  doi: 10.1007/s10957-018-1414-2.  Google Scholar

[30]

E. MiglierinaE. Molho and M. Rocca, Well-posedness and scalarization in vector optimization, J. Optim. Theory Appl., 126 (2005), 391-409.  doi: 10.1007/s10957-005-4723-1.  Google Scholar

[31]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. I. Basic Theory, Fundamental Principles of Mathematical Sciences, 330, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-31247-1.  Google Scholar

[32]

D. Ralph, A chain rule for nonsmooth composite functions via minimisation, Bull. Austral. Math. Soc., 49 (1994), 129-137.  doi: 10.1017/S0004972700016178.  Google Scholar

[33]

R. T. Rockafellar, Generalized directional derivatives and subgradients of nonconvex functions, Canadian J. Math., 32 (1980), 257-280.  doi: 10.4153/CJM-1980-020-7.  Google Scholar

[34]

L. Thibault, On compactly Lipschitzian mappings, in Recent Advances in Optimization, Lecture Notes in Econom. and Math. Systems, 452, Springer, Berlin, 1997,356–364. doi: 10.1007/978-3-642-59073-3_25.  Google Scholar

[35]

H.-Z. WeiC.-R. Chen and S.-J. Li, Characterizations for optimality conditions of general robust optimization problems, J. Optim. Theory Appl., 177 (2018), 835-856.  doi: 10.1007/s10957-018-1256-y.  Google Scholar

[36]

L. Zadeh, Optimality and non-scalar-valued performance criteria, IEEE Trans. Automatic Control, 8 (1963), 59-60.  doi: 10.1109/TAC.1963.1105511.  Google Scholar

[37]

A. Zaffaroni, Degrees of efficiency and degrees of minimality, SIAM J. Control Optim., 42 (2003), 1071-1086.  doi: 10.1137/S0363012902411532.  Google Scholar

[38]

C. Zălinescu, Convex Analysis in General Vector Spaces, World Scientific Publishing Co., Inc., River Edge, NJ, 2002. doi: 10.1142/9789812777096.  Google Scholar

[39]

K. Q. Zhao and X. M. Yang, $E-$Benson proper efficiency in vector optimization, Optimization, 64 (2015), 739-752.  doi: 10.1080/02331934.2013.798321.  Google Scholar

[40]

K.-Q. ZhaoX.-M. Yang and J.-W. Peng, Weak $E$-optimal solution in vector optimization, Taiwanese J. Math., 17 (2013), 1287-1302.  doi: 10.11650/tjm.17.2013.2721.  Google Scholar

show all references

References:
[1]

Q. H. AnsariE. Köbis and P. K. Sharma, Characterizations of multiobjective robustness via oriented distance function and image space analysis, J. Optim. Theory Appl., 181 (2019), 817-839.  doi: 10.1007/s10957-019-01505-y.  Google Scholar

[2]

Y. Araya, Four types of nonlinear scalarizations and some applications in set optimization, Nonlinear Anal., 75 (2012), 3821-3835.  doi: 10.1016/j.na.2012.02.004.  Google Scholar

[3]

R. I. BoţS.-M. Grad and G. Wanka, A general approach for studying duality in multiobjective optimization, Math. Methods Oper. Res., 65 (2007), 417-444.  doi: 10.1007/s00186-006-0125-x.  Google Scholar

[4]

J. V. BurkeM. C. Ferris and M. Qian, On the Clarke subdifferential of the distance function of a closed set, J. Math. Anal. Appl., 166 (1992), 199-213.  doi: 10.1016/0022-247X(92)90336-C.  Google Scholar

[5]

G.-Y. Chen, X. Huang and X. Yang, Vector Optimization. Set-Valued and Variational Analysis, Lecture Notes in Economics and Mathematical Systems, 541, Springer-Verlag, Berlin, 2005. doi: 10.1007/3-540-28445-1.  Google Scholar

[6]

F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, Graduate Texts in Mathematics, 264, Springer, London, 2013. doi: 10.1007/978-1-4471-4820-3.  Google Scholar

[7]

M.-O. Czarnecki and L. Thibault, Sublevel representations of epi-Lipschitz sets and other properties, Math. Program., 168 (2018), 555-569.  doi: 10.1007/s10107-016-1070-y.  Google Scholar

[8]

M. C. Delfour and J.-P. Zolésio, Shape analysis via oriented distance functions, J. Funct. Anal., 123 (1994), 129-201.  doi: 10.1006/jfan.1994.1086.  Google Scholar

[9]

M. DureaJ. Dutta and C. Tammer, Lagrange multipliers for $\epsilon$-Pareto solutions in vector optimization with nonsolid cones in Banach spaces, J. Optim. Theory Appl., 145 (2010), 196-211.  doi: 10.1007/s10957-009-9609-1.  Google Scholar

[10]

M. DureaR. Strugariu and C. Tammer, Scalarization in geometric and functional vector optimization revisited, J. Optim. Theory Appl., 159 (2013), 635-655.  doi: 10.1007/s10957-013-0360-2.  Google Scholar

[11]

J. Dutta and C. Tammer, Lagrangian conditions for vector optimization in Banach spaces, Math. Methods Oper. Res., 64 (2006), 521-540.  doi: 10.1007/s00186-006-0079-z.  Google Scholar

[12]

Y. Gao and X.-M. Yang, Properties of the nonlinear scalar functional and its applications to vector optimization problems, J. Global Optim., 73 (2019), 869-889.  doi: 10.1007/s10898-018-0725-z.  Google Scholar

[13]

Y. GaoX. Yang and K. L. Teo, Optimality conditions for approximate solutions of vector optimization problems, J. Ind. Manag. Optim., 7 (2011), 483-496.  doi: 10.3934/jimo.2011.7.483.  Google Scholar

[14]

C. Gerth and P. Weidner, Nonconvex separation theorems and some applications in vector optimization, J. Optim. Theory Appl., 67 (1990), 297-320.  doi: 10.1007/BF00940478.  Google Scholar

[15]

C. GutiérrezB. JiménezE. Miglierina and E. Molho, Scalarization in set optimization with solid and nonsolid ordering cones, J. Global Optim., 61 (2015), 525-552.  doi: 10.1007/s10898-014-0179-x.  Google Scholar

[16]

C. GutiérrezB. Jiménez and V. Novo, A unified approach and optimality conditions for approximate solutions of vector optimization problems, SIAM J. Optim., 17 (2006), 688-710.  doi: 10.1137/05062648X.  Google Scholar

[17]

C. GutiérrezB. Jiménez and V. Novo, Improvement sets and vector optimization, European J. Oper. Res., 223 (2012), 304-311.  doi: 10.1016/j.ejor.2012.05.050.  Google Scholar

[18]

C. Gutiérrez, B. Jiménez and V. Novo, Nonlinear scalarizations of set optimization problems with set orderings, in Set Optimization and Applications - The State of the Art, Springer Proc. Math. Stat., 151, Springer, Heidelberg, 2015, 43–63. doi: 10.1007/978-3-662-48670-2_2.  Google Scholar

[19]

C. GutiérrezE. MiglierinaE. Molho and V. Novo, Pointwise well-posedness in set optimization with cone proper sets, Nonlinear Anal., 75 (2012), 1822-1833.  doi: 10.1016/j.na.2011.09.028.  Google Scholar

[20]

C. GutiérrezV. NovoJ. L. Ródenas-Pedregosa and T. Tanaka, Nonconvex separation functional in linear spaces with applications to vector equilibria, SIAM J. Optim., 26 (2016), 2677-2695.  doi: 10.1137/16M1063575.  Google Scholar

[21]

J.-B. Hiriart-Urruty, Tangent cones, generalized gradients and mathematical programming in Banach spaces, Math. Oper. Res., 4 (1979), 79-97.  doi: 10.1287/moor.4.1.79.  Google Scholar

[22]

J.-B. Hiriart-Urruty, New concepts in nondifferentiable programming. Analyse non convexe, Bull. Soc. Math. France Mém., (1979), 57–85.  Google Scholar

[23]

B. JiménezV. Novo and A. Vílchez, A set scalarization function based on the oriented distance and relations with other set scalarizations, Optimization, 67 (2018), 2091-2116.  doi: 10.1080/02331934.2018.1533554.  Google Scholar

[24]

B. JiménezV. Novo and A. Vílchez, Characterization of set relations through extensions of the oriented distance, Math. Methods Oper. Res., 91 (2020), 89-115.  doi: 10.1007/s00186-019-00661-1.  Google Scholar

[25]

A. A. Khan, C. Tammer and C. Zălinescu, Set-Valued Optimization. An Introduction with Applications, Vector Optimization, Springer, Heidelberg, 2015. doi: 10.1007/978-3-642-54265-7.  Google Scholar

[26]

C. S. Lalitha and P. Chatterjee, Stability and scalarization in vector optimization using improvement sets, J. Optim. Theory Appl., 166 (2015), 825-843.  doi: 10.1007/s10957-014-0686-4.  Google Scholar

[27]

G. H. LiS. J. Li and M. X. You, Relationships between the oriented distance functional and a nonlinear separation functional, J. Math. Anal. Appl., 466 (2018), 1109-1117.  doi: 10.1016/j.jmaa.2018.06.046.  Google Scholar

[28]

C. G. LiuK. F. Ng and W. H. Yang, Merit functions in vector optimization, Math. Program., 119 (2009), 215-237.  doi: 10.1007/s10107-008-0208-y.  Google Scholar

[29]

H. LuoX. Wang and B. Lukens, Variational analysis on the signed distance functions, J. Optim. Theory Appl., 180 (2019), 751-774.  doi: 10.1007/s10957-018-1414-2.  Google Scholar

[30]

E. MiglierinaE. Molho and M. Rocca, Well-posedness and scalarization in vector optimization, J. Optim. Theory Appl., 126 (2005), 391-409.  doi: 10.1007/s10957-005-4723-1.  Google Scholar

[31]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. I. Basic Theory, Fundamental Principles of Mathematical Sciences, 330, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-31247-1.  Google Scholar

[32]

D. Ralph, A chain rule for nonsmooth composite functions via minimisation, Bull. Austral. Math. Soc., 49 (1994), 129-137.  doi: 10.1017/S0004972700016178.  Google Scholar

[33]

R. T. Rockafellar, Generalized directional derivatives and subgradients of nonconvex functions, Canadian J. Math., 32 (1980), 257-280.  doi: 10.4153/CJM-1980-020-7.  Google Scholar

[34]

L. Thibault, On compactly Lipschitzian mappings, in Recent Advances in Optimization, Lecture Notes in Econom. and Math. Systems, 452, Springer, Berlin, 1997,356–364. doi: 10.1007/978-3-642-59073-3_25.  Google Scholar

[35]

H.-Z. WeiC.-R. Chen and S.-J. Li, Characterizations for optimality conditions of general robust optimization problems, J. Optim. Theory Appl., 177 (2018), 835-856.  doi: 10.1007/s10957-018-1256-y.  Google Scholar

[36]

L. Zadeh, Optimality and non-scalar-valued performance criteria, IEEE Trans. Automatic Control, 8 (1963), 59-60.  doi: 10.1109/TAC.1963.1105511.  Google Scholar

[37]

A. Zaffaroni, Degrees of efficiency and degrees of minimality, SIAM J. Control Optim., 42 (2003), 1071-1086.  doi: 10.1137/S0363012902411532.  Google Scholar

[38]

C. Zălinescu, Convex Analysis in General Vector Spaces, World Scientific Publishing Co., Inc., River Edge, NJ, 2002. doi: 10.1142/9789812777096.  Google Scholar

[39]

K. Q. Zhao and X. M. Yang, $E-$Benson proper efficiency in vector optimization, Optimization, 64 (2015), 739-752.  doi: 10.1080/02331934.2013.798321.  Google Scholar

[40]

K.-Q. ZhaoX.-M. Yang and J.-W. Peng, Weak $E$-optimal solution in vector optimization, Taiwanese J. Math., 17 (2013), 1287-1302.  doi: 10.11650/tjm.17.2013.2721.  Google Scholar

Figure 2.1.  $ \bar{y}\in bdA $ with $ \Delta_{A}(\bar{y}) = 0 $, $ \Delta_{cl A}(\bar{y}) = -2 $ and $ \Delta_{int A}(\bar{y}) = 1 $ in Example 2.1
[1]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[2]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[3]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[4]

Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386

[5]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[6]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[7]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[8]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[9]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[10]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[11]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[12]

San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038

[13]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[14]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[15]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[16]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[17]

Wen Li, Wei-Hui Liu, Seak Weng Vong. Perron vector analysis for irreducible nonnegative tensors and its applications. Journal of Industrial & Management Optimization, 2021, 17 (1) : 29-50. doi: 10.3934/jimo.2019097

[18]

Claude-Michel Brauner, Luca Lorenzi. Instability of free interfaces in premixed flame propagation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 575-596. doi: 10.3934/dcdss.2020363

[19]

Aurelia Dymek. Proximality of multidimensional $ \mathscr{B} $-free systems. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021013

[20]

Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021017

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]