
-
Previous Article
A new adaptive method to nonlinear semi-infinite programming
- JIMO Home
- This Issue
-
Next Article
An efficient genetic algorithm for decentralized multi-project scheduling with resource transfers
On the $ BMAP_1, BMAP_2/PH/g, c $ retrial queueing system
1. | School of Mathematical Science, Changsha Normal University, Changsha 410100, Hunan, China |
2. | School of Mathematics and Statistics, Central South University, Changsha 410083, Hunan, China |
In this paper, we consider the BMAP/PH/c retrial queue with two types of customers where the rate of individual repeated attempts from the orbit is modulated according to a Markov Modulated Poisson Process. Using the theory of multi-dimensional asymptotically quasi-Toeplitz Markov chain, we obtain the algorithm for calculating the stationary distribution of the system. Main performance measures are presented. Furthermore, we investigate some optimization problems. The algorithm for determining the optimal number of guard servers and total servers is elaborated. Finally, this queueing system is applied to the cellular wireless network. Numerical results to illustrate the optimization problems and the impact of retrial on performance measures are provided. We find that the performance measures are mainly affected by the two types of customers' arrivals and service patterns, but the retrial rate plays a less crucial role.
References:
[1] |
J. R. Artalejo, Accessible bibliography on retrial queues, Mathematical and Computer Modelling, 30 (1999), 1-6. Google Scholar |
[2] |
J. R. Artalejo,
A classified bibliography of research on retrial queues: Progress in 1990-1999, Top, 7 (1999), 187-211.
doi: 10.1007/BF02564721. |
[3] |
L. Breuer, A. Dudin and V. Klimenok,
A retrial $BMAP/PH/N$ system, Queueing Systems, 40 (2002), 433-457.
doi: 10.1023/A:1015041602946. |
[4] |
S. R. Chakravarthy, The batch Markovian arrival process: A review and future work, Advances in Probability Theory and Stochastic Processes, (1999), 21–49. Google Scholar |
[5] |
A. Dudin and V. Klimenok, A retrial BMAP/PH/N queueing system with Markov modulated retrials, 2012 2nd Baltic Congress on Future Internet Communications, IEEE, (2012), 246–251.
doi: 10.1109/BCFIC.2012.6217953. |
[6] |
A. N. Dudin, G. V. Tsarenkov and V. I. Klimenok, Software "SIRIUS++" for performance evaluation of modern communication networks, Modelling and Simulation 2002. 16th European Simulation Multi-conference, Darmstadt, (2002), 489–493. Google Scholar |
[7] |
G. Falin,
A survey of retrial queues, Queueing Systems Theory Appl., 7 (1990), 127-167.
doi: 10.1007/BF01158472. |
[8] |
A. Graham, Kronecker Products and Matrix Calculus with Applications, Ellis Horwood Ltd., Chichester, Halsted Press [John Wiley & Sons, Inc.], New York, 1981,130 pp. |
[9] |
R. Guerin,
Queueing-blocking system with two arrival streams and guard channels, IEEE Transations in Communications, 36 (1988), 153-163.
doi: 10.1109/26.2745. |
[10] |
D. Hong and S.S. Rappaport, Traffic model and performance analysis for cellular mobile radio telephone systems with prioritized and nonprioritized handoff procedures, IEEE Transactions on Vehicular Technology, 35 (1996), 77-99. Google Scholar |
[11] |
C. S. Kim, V. I. Klimenok and D. S. Orlovsky,
The BMAP/PH/N retrial queue with Markovian flow of breakdowns, European Journal of Operational Research, 189 (2008), 1057-1072.
doi: 10.1016/j.ejor.2007.02.053. |
[12] |
C. S. Kim, V. Klimenok, V. Mushko and A. Dudin,
The BMAP/PH/N retrial queueing system operating in {M}arkovian random environment, Comput. Oper. Res., 37 (2010), 1228-1237.
doi: 10.1016/j.cor.2009.09.008. |
[13] |
C. S. Kim, V. I. Klimenok and A. N. Dudin,
Analysis and optimization of guard channel policy in cellular mobile networks with account of retrials, Comput. Oper. Res., 43 (2014), 181-190.
doi: 10.1016/j.cor.2013.09.005. |
[14] |
A. Klemm, C. Lindemann and M. Lohmann,
Modeling IP traffic using the batch Markovian arrival process, Performance Evaluation, 54 (2003), 149-173.
doi: 10.1007/3-540-46029-2_6. |
[15] |
V. I. Klimenok, D. S. Orlovsky and A. N. Dudin,
A $BMAP/PH/N$ system with impatient repeated Calls, Asia-Pacific Journal of Operational Research, 24 (2007), 293-312.
doi: 10.1142/S0217595907001310. |
[16] |
V. I. Klimenok and A. N. Dudin,
Multi-dimensional asymptotically quasi-Toeplitz Markov chains and their application in queueing theory, Queueing Systems, 54 (2006), 245-259.
doi: 10.1007/s11134-006-0300-z. |
[17] |
G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, American Statistical Association, Alexandria, VA, 1999.
doi: 10.1137/1.9780898719734. |
[18] |
D. M. Lucantoni,
New results on the single server queue with a batch Markovian arrival process, Stochastic Models, 7 (1991), 1-46.
doi: 10.1080/15326349108807174. |
[19] |
M. Martin and J. R. Artalejo,
Analysis of an $M/G/1$ queue with two types of impatient units, Advances in Applied Probability, 27 (1995), 840-861.
doi: 10.2307/1428136. |
[20] |
E. Morozov, A. Rumyantsev, S. Dey and T. G. Deepak, Performance analysis and stability of multiclass orbit queue with constant retrial rates and balking, Performance Evaluation, 134 (2019), 102005.
doi: 10.1016/j.peva.2019.102005. |
[21] |
M. F. Neuts,
A versatile Markovian point process, Journal of Applied Probability, 16 (1979), 764-779.
doi: 10.2307/3213143. |
[22] |
M. F. Neuts, Structured Stochastic Matrices of M/G/1-type and their Applications, Probability: Pure and Applied, 5. Marcel Dekker, Inc., New York, 1989. |
[23] |
M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach,
Johns Hopkins Series in the Mathematical Sciences, 2. Johns Hopkins University Press, Baltimore, Md., 1981. |
[24] |
P. I. Panagoulias, I. D. Moscholios, P. G. Sarigiannidis and M. D. Logothetis,
Congestion probabilities in OFDM wireless networks with compound Poisson arrivals, IET Communications, 14 (2020), 674-681.
doi: 10.1049/iet-com.2019.0845. |
[25] |
K. S. Trivedi, S. Dharmaraja and X. M. Ma,
Analytic modeling of handoffs in wireless cellular networks, Information Sciences, 148 (2000), 155-166.
doi: 10.1016/S0020-0255(02)00292-X. |
[26] |
T. M. Walingo and F. Takawira,
Performance analysis of a connection admission scheme for future networks, IEEE Transactions on Wireless Communications, 14 (2015), 1994-2006.
doi: 10.1109/TWC.2014.2378777. |
[27] |
Y. L. Wu, G. Y. Min and L. T. Yang,
Performance analysis of hybrid wireless networks under bursty and correlated traffic, IEEE Transactions on Vehicular Technology, 62 (2013), 449-454.
doi: 10.1109/TVT.2012.2219890. |
[28] |
J. B. Wu, Z. M. Lian and G. Yang,
Analysis of the finite source MAP/PH/N retrial G-queue operating in a random environment, Applied Mathematical Modelling, 35 (2011), 1184-1193.
doi: 10.1016/j.apm.2010.08.006. |
[29] |
J. B. Wu and Z. T. Lian,
Analysis of $M_1, M_2/G/1$ G-queueing system with retrial customers, Nonlinear Analysis: Real World Applications, 14 (2013), 365-382.
doi: 10.1016/j.nonrwa.2012.06.009. |
show all references
References:
[1] |
J. R. Artalejo, Accessible bibliography on retrial queues, Mathematical and Computer Modelling, 30 (1999), 1-6. Google Scholar |
[2] |
J. R. Artalejo,
A classified bibliography of research on retrial queues: Progress in 1990-1999, Top, 7 (1999), 187-211.
doi: 10.1007/BF02564721. |
[3] |
L. Breuer, A. Dudin and V. Klimenok,
A retrial $BMAP/PH/N$ system, Queueing Systems, 40 (2002), 433-457.
doi: 10.1023/A:1015041602946. |
[4] |
S. R. Chakravarthy, The batch Markovian arrival process: A review and future work, Advances in Probability Theory and Stochastic Processes, (1999), 21–49. Google Scholar |
[5] |
A. Dudin and V. Klimenok, A retrial BMAP/PH/N queueing system with Markov modulated retrials, 2012 2nd Baltic Congress on Future Internet Communications, IEEE, (2012), 246–251.
doi: 10.1109/BCFIC.2012.6217953. |
[6] |
A. N. Dudin, G. V. Tsarenkov and V. I. Klimenok, Software "SIRIUS++" for performance evaluation of modern communication networks, Modelling and Simulation 2002. 16th European Simulation Multi-conference, Darmstadt, (2002), 489–493. Google Scholar |
[7] |
G. Falin,
A survey of retrial queues, Queueing Systems Theory Appl., 7 (1990), 127-167.
doi: 10.1007/BF01158472. |
[8] |
A. Graham, Kronecker Products and Matrix Calculus with Applications, Ellis Horwood Ltd., Chichester, Halsted Press [John Wiley & Sons, Inc.], New York, 1981,130 pp. |
[9] |
R. Guerin,
Queueing-blocking system with two arrival streams and guard channels, IEEE Transations in Communications, 36 (1988), 153-163.
doi: 10.1109/26.2745. |
[10] |
D. Hong and S.S. Rappaport, Traffic model and performance analysis for cellular mobile radio telephone systems with prioritized and nonprioritized handoff procedures, IEEE Transactions on Vehicular Technology, 35 (1996), 77-99. Google Scholar |
[11] |
C. S. Kim, V. I. Klimenok and D. S. Orlovsky,
The BMAP/PH/N retrial queue with Markovian flow of breakdowns, European Journal of Operational Research, 189 (2008), 1057-1072.
doi: 10.1016/j.ejor.2007.02.053. |
[12] |
C. S. Kim, V. Klimenok, V. Mushko and A. Dudin,
The BMAP/PH/N retrial queueing system operating in {M}arkovian random environment, Comput. Oper. Res., 37 (2010), 1228-1237.
doi: 10.1016/j.cor.2009.09.008. |
[13] |
C. S. Kim, V. I. Klimenok and A. N. Dudin,
Analysis and optimization of guard channel policy in cellular mobile networks with account of retrials, Comput. Oper. Res., 43 (2014), 181-190.
doi: 10.1016/j.cor.2013.09.005. |
[14] |
A. Klemm, C. Lindemann and M. Lohmann,
Modeling IP traffic using the batch Markovian arrival process, Performance Evaluation, 54 (2003), 149-173.
doi: 10.1007/3-540-46029-2_6. |
[15] |
V. I. Klimenok, D. S. Orlovsky and A. N. Dudin,
A $BMAP/PH/N$ system with impatient repeated Calls, Asia-Pacific Journal of Operational Research, 24 (2007), 293-312.
doi: 10.1142/S0217595907001310. |
[16] |
V. I. Klimenok and A. N. Dudin,
Multi-dimensional asymptotically quasi-Toeplitz Markov chains and their application in queueing theory, Queueing Systems, 54 (2006), 245-259.
doi: 10.1007/s11134-006-0300-z. |
[17] |
G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, American Statistical Association, Alexandria, VA, 1999.
doi: 10.1137/1.9780898719734. |
[18] |
D. M. Lucantoni,
New results on the single server queue with a batch Markovian arrival process, Stochastic Models, 7 (1991), 1-46.
doi: 10.1080/15326349108807174. |
[19] |
M. Martin and J. R. Artalejo,
Analysis of an $M/G/1$ queue with two types of impatient units, Advances in Applied Probability, 27 (1995), 840-861.
doi: 10.2307/1428136. |
[20] |
E. Morozov, A. Rumyantsev, S. Dey and T. G. Deepak, Performance analysis and stability of multiclass orbit queue with constant retrial rates and balking, Performance Evaluation, 134 (2019), 102005.
doi: 10.1016/j.peva.2019.102005. |
[21] |
M. F. Neuts,
A versatile Markovian point process, Journal of Applied Probability, 16 (1979), 764-779.
doi: 10.2307/3213143. |
[22] |
M. F. Neuts, Structured Stochastic Matrices of M/G/1-type and their Applications, Probability: Pure and Applied, 5. Marcel Dekker, Inc., New York, 1989. |
[23] |
M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach,
Johns Hopkins Series in the Mathematical Sciences, 2. Johns Hopkins University Press, Baltimore, Md., 1981. |
[24] |
P. I. Panagoulias, I. D. Moscholios, P. G. Sarigiannidis and M. D. Logothetis,
Congestion probabilities in OFDM wireless networks with compound Poisson arrivals, IET Communications, 14 (2020), 674-681.
doi: 10.1049/iet-com.2019.0845. |
[25] |
K. S. Trivedi, S. Dharmaraja and X. M. Ma,
Analytic modeling of handoffs in wireless cellular networks, Information Sciences, 148 (2000), 155-166.
doi: 10.1016/S0020-0255(02)00292-X. |
[26] |
T. M. Walingo and F. Takawira,
Performance analysis of a connection admission scheme for future networks, IEEE Transactions on Wireless Communications, 14 (2015), 1994-2006.
doi: 10.1109/TWC.2014.2378777. |
[27] |
Y. L. Wu, G. Y. Min and L. T. Yang,
Performance analysis of hybrid wireless networks under bursty and correlated traffic, IEEE Transactions on Vehicular Technology, 62 (2013), 449-454.
doi: 10.1109/TVT.2012.2219890. |
[28] |
J. B. Wu, Z. M. Lian and G. Yang,
Analysis of the finite source MAP/PH/N retrial G-queue operating in a random environment, Applied Mathematical Modelling, 35 (2011), 1184-1193.
doi: 10.1016/j.apm.2010.08.006. |
[29] |
J. B. Wu and Z. T. Lian,
Analysis of $M_1, M_2/G/1$ G-queueing system with retrial customers, Nonlinear Analysis: Real World Applications, 14 (2013), 365-382.
doi: 10.1016/j.nonrwa.2012.06.009. |



$i$ $\backslash$ $b$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $sum$ |
0 | 0.0467 | 0.1413 | 0.2136 | 0.2148 | 0.1604 | 0.0923 | 0.0376 | 0.0016 | 0.0001 | 0.9084 |
1 | 0.0001 | 0.0006 | 0.0020 | 0.0047 | 0.0091 | 0.0149 | 0.0208 | 0.0013 | 0.0001 | 0.0536 |
2 | 0.0000 | 0.0000 | 0.0002 | 0.0008 | 0.0023 | 0.0054 | 0.0109 | 0.0008 | 0.0000 | 0.0206 |
3 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0007 | 0.0022 | 0.0055 | 0.0005 | 0.0000 | 0.0092 |
4 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0002 | 0.0009 | 0.0028 | 0.0003 | 0.0000 | 0.0043 |
5 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0004 | 0.0014 | 0.0001 | 0.0000 | 0.0020 |
1.0e-003 $\times$ | ||||||||||
6 | 0.0000 | 0.0001 | 0.0007 | 0.0055 | 0.0334 | 0.1661 | 0.6986 | 0.0667 | 0.0051 | 0.9761 |
1.0e-003 $\times$ | ||||||||||
7 | 0.0000 | 0.0000 | 0.0002 | 0.0019 | 0.0130 | 0.0731 | 0.3474 | 0.0337 | 0.0027 | 0.4721 |
1.0e-003$\times$ | ||||||||||
8 | 0.0000 | 0.0000 | 0.0001 | 0.0007 | 0.0052 | 0.0325 | 0.1724 | 0.0169 | 0.0014 | 0.2291 |
1.0e-004$\times$ | ||||||||||
9 | 0.0000 | 0.0000 | 0.0002 | 0.0025 | 0.0211 | 0.1460 | 0.8533 | 0.0846 | 0.0069 | 1.1145 |
1.0e-004$\times$ | ||||||||||
10 | 0.0000 | 0.0000 | 0.0001 | 0.0009 | 0.0087 | 0.0660 | 0.4217 | 0.0421 | 0.0035 | 0.5429 |
$sum$ | 0.0468 | 0.1419 | 0.2158 | 0.2206 | 0.1728 | 0.1162 | 0.0800 | 0.0047 | 0.0002 | 0.999 |
$i$ $\backslash$ $b$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $sum$ |
0 | 0.0467 | 0.1413 | 0.2136 | 0.2148 | 0.1604 | 0.0923 | 0.0376 | 0.0016 | 0.0001 | 0.9084 |
1 | 0.0001 | 0.0006 | 0.0020 | 0.0047 | 0.0091 | 0.0149 | 0.0208 | 0.0013 | 0.0001 | 0.0536 |
2 | 0.0000 | 0.0000 | 0.0002 | 0.0008 | 0.0023 | 0.0054 | 0.0109 | 0.0008 | 0.0000 | 0.0206 |
3 | 0.0000 | 0.0000 | 0.0000 | 0.0002 | 0.0007 | 0.0022 | 0.0055 | 0.0005 | 0.0000 | 0.0092 |
4 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0002 | 0.0009 | 0.0028 | 0.0003 | 0.0000 | 0.0043 |
5 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0004 | 0.0014 | 0.0001 | 0.0000 | 0.0020 |
1.0e-003 $\times$ | ||||||||||
6 | 0.0000 | 0.0001 | 0.0007 | 0.0055 | 0.0334 | 0.1661 | 0.6986 | 0.0667 | 0.0051 | 0.9761 |
1.0e-003 $\times$ | ||||||||||
7 | 0.0000 | 0.0000 | 0.0002 | 0.0019 | 0.0130 | 0.0731 | 0.3474 | 0.0337 | 0.0027 | 0.4721 |
1.0e-003$\times$ | ||||||||||
8 | 0.0000 | 0.0000 | 0.0001 | 0.0007 | 0.0052 | 0.0325 | 0.1724 | 0.0169 | 0.0014 | 0.2291 |
1.0e-004$\times$ | ||||||||||
9 | 0.0000 | 0.0000 | 0.0002 | 0.0025 | 0.0211 | 0.1460 | 0.8533 | 0.0846 | 0.0069 | 1.1145 |
1.0e-004$\times$ | ||||||||||
10 | 0.0000 | 0.0000 | 0.0001 | 0.0009 | 0.0087 | 0.0660 | 0.4217 | 0.0421 | 0.0035 | 0.5429 |
$sum$ | 0.0468 | 0.1419 | 0.2158 | 0.2206 | 0.1728 | 0.1162 | 0.0800 | 0.0047 | 0.0002 | 0.999 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 20 | |
1 | 18 | 18 | 18 | 17 | 17 | 17 | 16 | 16 | 16 | 16 | 15 | 15 | 15 | 14 | 14 | 13 |
10 | 18 | 18 | 18 | 17 | 17 | 17 | 16 | 16 | 16 | 16 | 15 | 15 | 15 | 14 | 14 | 13 |
20 | 18 | 18 | 18 | 17 | 17 | 17 | 16 | 16 | 16 | 16 | 15 | 15 | 15 | 14 | 14 | 13 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 20 | |
1 | 18 | 18 | 18 | 17 | 17 | 17 | 16 | 16 | 16 | 16 | 15 | 15 | 15 | 14 | 14 | 13 |
10 | 18 | 18 | 18 | 17 | 17 | 17 | 16 | 16 | 16 | 16 | 15 | 15 | 15 | 14 | 14 | 13 |
20 | 18 | 18 | 18 | 17 | 17 | 17 | 16 | 16 | 16 | 16 | 15 | 15 | 15 | 14 | 14 | 13 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 20 | |
1 | 8 | 11 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 29 | 31 | 33 | 35 | 37 | 45 |
5 | 10 | 13 | 15 | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 30 | 32 | 34 | 36 | 38 | 46 |
10 | 13 | 15 | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31 | 32 | 34 | 36 | 37 | 39 | 47 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 20 | |
1 | 8 | 11 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 29 | 31 | 33 | 35 | 37 | 45 |
5 | 10 | 13 | 15 | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 30 | 32 | 34 | 36 | 38 | 46 |
10 | 13 | 15 | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31 | 32 | 34 | 36 | 37 | 39 | 47 |
[1] |
Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial & Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009 |
[2] |
Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial & Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130 |
[3] |
Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020367 |
[4] |
Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170 |
[5] |
Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021001 |
[6] |
Hanyu Gu, Hue Chi Lam, Yakov Zinder. Planning rolling stock maintenance: Optimization of train arrival dates at a maintenance center. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020177 |
[7] |
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106 |
[8] |
Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124 |
[9] |
Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020 |
[10] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[11] |
Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109 |
[12] |
Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021013 |
[13] |
Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283 |
[14] |
Yongjie Wang, Nan Gao. Some properties for almost cellular algebras. Electronic Research Archive, 2021, 29 (1) : 1681-1689. doi: 10.3934/era.2020086 |
[15] |
Xiaoxian Tang, Jie Wang. Bistability of sequestration networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1337-1357. doi: 10.3934/dcdsb.2020165 |
[16] |
Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103 |
[17] |
Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021010 |
[18] |
D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346 |
[19] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[20] |
Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020 doi: 10.3934/jcd.2021006 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]