\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Impact of cap-and-trade regulation on coordinating perishable products supply chain with cost learning

  • * Corresponding author: Fanwen Meng

    * Corresponding author: Fanwen Meng 
The research is partly supported by the National Natural Science Foundation of China under grants 71771138, 71702087 and 71701154, Humanities and Social Sciences Youth Foundation of Ministry of Education of China under grant 17YJC630004, Special Foundation for Taishan Scholars of Shandong Province, China under Grant tsqn201812061, and Science and Technology Research Program for Higher Education of Shandong Province, China under Grant 2019KJI006
Abstract Full Text(HTML) Figure(6) / Table(4) Related Papers Cited by
  • This paper incorporates carbon emission regulation and cost learning effects to examine a manufacturer-retailer supply chain for deteriorating items over a multi-period planning horizon. We investigate their impacts on supply chain coordination under the assumption that the product demand is affected by the selling price, promotional effort and inventory level. We first propose two algorithms for determining optimal solutions of the centralized and decentralized models. We show that the decentralized system can be coordinated perfectly with a two-part tariff contract. Further, we study necessary conditions under which members of the supply chain can accept this contract. At last, we conduct numerical experiment to illustrate the obtained theoretical results in impact analysis and the robustness of the coordinated model.

    Mathematics Subject Classification: Primary: 90B60, 91A05; Secondary: 90C46.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Graphical representation of inventory level at the retailer

    Figure 2.  Intervals of contract parameters to attain the win-win outcome

    Figure 3.  Impacts of $ C $ on profit and total emissions amount

    Figure 4.  Impacts of $ c_{p} $ on profit and total emissions amount

    Figure 5.  Impacts of $ \phi $ on profit and total emissions amount

    Figure 6.  Effects plot for the SN ratio of the coordination system

    Table 1.  The optimal solution of the example

    Model $ w $ $ s $ $ p $ $ n $ Retailer's Manufacturer's Total Total emissions
    profit profit profit amount
    Centralized - 12.15 213.75 3 - - 25589.00 285270
    Decentralized 56.76 6.08 256.88 3 3622.10 17045.00 20667.10 142640
    TT contract
    $ F=9850 $ 50 12.15 213.75 3 8539.00 17050.00 25589.00 285270
    $ F=12000 $ 50 12.15 213.75 3 6389.00 19200.00 25589.00 285270
    $ F=14750 $ 50 12.15 213.75 3 3639.00 21950.00 25589.00 285270
     | Show Table
    DownLoad: CSV

    Table 2.  Calculation results of $ L_{8} $ orthogonal array experiment for the coordination model

    No. A B C D E Total profit SN ratio of Total emissions SN ratio of total
    $ h_{r} $ $ \theta $ $ \phi $ $ C $ $ c_{p} $ total profit amount emissions amount
    1 1 1 1 1 1 43394 92.75 284600 -109.085
    2 1 1 1 2 2 38191 91.64 309080 -109.801
    3 1 2 2 1 1 15727 83.93 259150 -108.271
    4 1 2 2 2 2 6371 76.08 280390 -108.955
    5 2 1 2 1 2 39551 91.94 314060 -109.940
    6 2 1 2 2 1 32531 90.25 289570 -109.235
    7 2 2 1 1 2 15409 83.76 284830 -109.092
    8 2 2 1 2 1 13943 82.89 263590 -108.419
     | Show Table
    DownLoad: CSV

    Table 3.  Analysis of variance for the total profits and its SN ratio

    (a) Analysis of variance for the total profits
    Source df SS($ \times10^{8} $) MS($ \times10^{8} $) F P
    A 1 0.0063 0.0063 0.11 0.776
    B 1 13.0604 13.0604 217.25 0.005
    C 1 0.3510 0.3510 5.84 0.137
    D 1 0.6639 0.6639 11.04 0.080
    E 1 0.0461 0.0461 0.77 0.474
    Error 2 0.1202 0.0601 - -
    Total 7 14.2480 - - -
    (b) Analysis of variance for the SN ratio of the total profits
    Source df SS MS F P
    A 1 2.450 2.450 0.43 0.581
    B 1 199.178 199.178 34.55 0.028
    C 1 9.734 9.734 1.69 0.323
    D 1 16.603 16.603 2.88 0.232
    E 1 5.109 5.109 0.89 0.446
    Error 2 11.529 5.765 - -
    Total 7 244.604 - - -
     | Show Table
    DownLoad: CSV

    Table 4.  Analysis of variance for the carbon emissions and its SN ratio

    (a) Analysis of variance for the carbon emissions
    Source df SS($ \times10^{8} $) MS($ \times10^{8} $) F P
    A 1 0.4432 0.4432 16.84 0.055
    B 1 14.9468 14.9468 567.78 0.002
    C 1 0.0014 0.0014 0.05 0.837
    D 1 0.0000 0.0000 0.00 0.998
    E 1 10.4539 10.4539 397.11 0.003
    Error 2 0.0527 0.0263 - -
    Total 7 25.8979 - - -
    (b) Analysis of variance for the SN ratio of the carbon emissions
    Source df SS MS F P
    A 1 0.0411 0.04107 157.77 0.006
    B 1 1.3819 1.3819 5307.76 0.000
    C 1 0.0000 0.0000 0.01 0.920
    D 1 0.0001 0.0001 0.25 0.669
    E 1 0.9655 0.9655 3708.69 0.000
    Error 2 0.0005 0.0003 - -
    Total 7 2.3891 - - -
     | Show Table
    DownLoad: CSV
  • [1] Q. G. BaiM. Y. Chen and L. Xu, Revenue and promotional cost-sharing contract versus two-part tariff contract in coordinating sustainable supply chain systems with deteriorating items, Int. J. Prod. Econ., 187 (2017), 85-101. 
    [2] Q. G. BaiY. M. GongM. Z. Jin and X. H. Xu, Effects of carbon emission reduction on supply chain coordination with vendor-managed deteriorating product inventory, Int. J. Prod. Econ., 208 (2019), 83-99.  doi: 10.1016/j.ijpe.2018.11.008.
    [3] Q. G. BaiX. H. XuJ. T. Xu and D. Wang, Coordinating a supply chain for deteriorating items with multi-factor-dependent demand over a finite planning horizon, Appl. Math. Model., 40 (2016), 9342-9361.  doi: 10.1016/j.apm.2016.06.021.
    [4] K. Biel and C. H. Glock, Governing the dynamics of multi-stage production systems subjects to learning and forgetting effects: A simulation study, Int. J. Prod. Res., 56 (2018), 3439-3461.  doi: 10.1080/00207543.2017.1338780.
    [5] A. Burnetas and P. Ritchken, Option pricing with downward-sloping demand curves: The case of supply chain options, Manage. Sci., 51 (2015), 566-580.  doi: 10.1287/mnsc.1040.0342.
    [6] L. T. Chen and C. C. Wei, Multi-period channel coordination in vendor-managed inventory for deteriorating goods, Int. J. Prod. Res., 50 (2012), 4396-4413.  doi: 10.1080/00207543.2011.592159.
    [7] T. H. Chen and Y. C. Tsao, Optimal lot-sizing integration policy under learning and rework effects in a manufacturer-retailer chain, Int. J. Prod. Econ., 155 (2014), 239-248.  doi: 10.1016/j.ijpe.2014.02.011.
    [8] S. H. Chung and C. Kwon, Integrated supply chain management for perishable products: Dynamics and oligopolistic competition perspectives with application to pharmaceuticals, Int. J. Prod. Econ., 179 (2016), 117-129.  doi: 10.1016/j.ijpe.2016.05.021.
    [9] S. F. DuL. Hu and M. L. Song, Production optimization considering environmental performance and preference in the cap-and-trade system, J. Clean. Prod., 112 (2016), 1600-1607.  doi: 10.1016/j.jclepro.2014.08.086.
    [10] C.-Y. Dye, Optimal joint dynamic pricing, advertising and inventory control model for perishable items with psychic stcok effect, Eur. J. Oper. Res., 283 (2020), 576-587.  doi: 10.1016/j.ejor.2019.11.008.
    [11] European Commission, (2013), https://ec.europa.eu/clima/policies/ets_en.
    [12] L. Feng and Y.-L. Chan, Joint pricing and producdtion decisions for new products with learning curve effects under upstream and downstream trade credits., Eur. J. Oper. Res., 272 (2019), 905-913.  doi: 10.1016/j.ejor.2018.07.003.
    [13] Q. Feng and L. X. Lu, Supply chain contracting under competition: Bilateral bargaining vs. stackelberg, Prod. Oper. Manag., 22 (2013), 661-675. 
    [14] B. C. Giri and S. Bardhan, Supply chain coordination for a deteriorating item with stock and price-dependent demand under revenue sharing contract, Int. T. Oper. Res., 19 (2012), 753-768.  doi: 10.1111/j.1475-3995.2011.00833.x.
    [15] B. C. Giri and C. H. Glock, A closed-loop supply chain with stochastic product returns and worker experience under learning and forgetting, Int. J. Prod. Res., 55 (2017), 6760-6778.  doi: 10.1080/00207543.2017.1347301.
    [16] C. H. Glock and M. Y. Jaber, A multi-stage production-inventory model with learning and forgetting effects, rework and scrap, Comput. Ind. Eng., 64 (2013), 708-720.  doi: 10.1016/j.cie.2012.08.018.
    [17] H. Gurnani and M. Erkoc, Supply contracts in manufacturer-retailer interactions with manufacturer-quality and retailer effort-induced demand, Nav. Res. Log., 55 (2008), 200-217.  doi: 10.1002/nav.20277.
    [18] T.-W. Hung and P.-T. Chen, On the optimal replenishment in a finite planning horizon with learning effect of setup costs, J. Ind. Manag. Optim., 6 (2010), 425-433.  doi: 10.3934/jimo.2010.6.425.
    [19] M. Y. Jaber and A. L. Guiffrida, Learning curves for imperfect production processes with reworks and process restoration interruptions, Eur. J. Oper. Res., 189 (2008), 93-104.  doi: 10.1016/j.ejor.2007.05.024.
    [20] M. Y. Jaber and A. M. A. EI Saadany, An economic production and remanufacturing model with learning effects, Int. J. Prod. Econ., 131 (2011), 115-127. 
    [21] N. KazemiE. U. OluguS. H. Abdul-Rashid and R. A. R. Ghazilla, A fuzzy EOQ model with backorders and forgetting effect on fuzzy parameters: An empirical study, Comput. Ind. Eng., 96 (2016), 140-148.  doi: 10.1016/j.cie.2016.03.004.
    [22] N. KazemiE. ShekarianL. E. Cárdenas-Barrón and E. U. Olugu, Incorporating human learning into a fuzzy EOQ inventory model with backorders, Comput. Ind. Eng., 87 (2015), 540-542.  doi: 10.1016/j.cie.2015.05.014.
    [23] M. KhanM. Hussain and L. E. C$\acute{a}$rdenas-Barr$\acute{o}$n, Learning and screening errors in an EPQ inventory model for supply chains with stochatic lead time demands, Int. J. Prod. Res., 55 (2017), 4816-4832. 
    [24] M. KhanM. Y. Jaber and A. R. Ahmad, An integrated supply chain model with errors in quality inspection and learning in production, Omega, 42 (2014), 16-24.  doi: 10.1016/j.omega.2013.02.002.
    [25] K. KoganF. EI Ouardighi and A. Herbon, Production with learing and forgetting in a competitive environment, Int. J. Prod. Econ., 189 (2017), 52-62. 
    [26] T. LiS. P. Sethi and X. L. He, Dynamic pricing, production, and channel coordination with stochastic learning, Prod. Oper. Manag., 24 (2015), 857-882.  doi: 10.1111/poms.12320.
    [27] C. Lin and Y. Lin, A cooperative inventory policy with deteriorating items for a two-echelon model, Eur. J. Oper. Res., 178 (2007), 92-111.  doi: 10.1016/j.ejor.2006.01.012.
    [28] J. R. Luo and X. Chen, Coordination of random yield supply chains with improved revenue sharing contracts, Eur. J. Ind. Eng., 10 (2016), 81-102.  doi: 10.1504/EJIE.2016.075105.
    [29] Z. LuoX. Chen and X. J. Wang, The role of co-opetition in low carbon manufacturing, Eur. J. Oper. Res., 253 (2016), 392-403.  doi: 10.1016/j.ejor.2016.02.030.
    [30] B. Lus and A. Muriel, Measuring the impact of increased product substitution on pricing and capacity decisions under linear demand models, Prod. Oper. Manag., 18 (2009), 95-113.  doi: 10.1111/j.1937-5956.2009.01001.x.
    [31] L. Moussawi-HaidarM. Salameh and W. Nasr, Production lot sizing with qualtiy screening and rework, Appl. Math. Model., 40 (2016), 3242-3256.  doi: 10.1016/j.apm.2015.09.095.
    [32] E. L. Plambeck, Reducing greenhouse gas emissions through operations and supply chain management, Energ. Econ., 34 (2012), s64–s74. doi: 10.1016/j.eneco.2012.08.031.
    [33] B. R. Sarker and B. Wu, Optimal models for a single-producer multi-buyer integrated system of deteriorating items with raw materials storage costs, Int. J. Adv. Manu. Tech., 82 (2016), 49-63.  doi: 10.1007/s00170-015-7340-7.
    [34] G. Taguchi, Tables of orthogonal arrays and linear graphs, Rep. Statist. Appl. Res. Un. Japan. Sci. Engrs., 7 (1960), 1-52. 
    [35] G. Taguchi, System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Costs, Kraus International, White Plains, NY, 1987.
    [36] J.-T. TengK.-R. Lou and L. Wang, Optimal trade credit and lot size policies in economic production quantity models with learning curve production costs, Int. J. Prod. Econ., 155 (2014), 318-323.  doi: 10.1016/j.ijpe.2013.10.012.
    [37] Y.-C. Tsao and G.-J. Sheen, Effects of promotion cost sharing policy with the sales learning curve on supply chain coordination, Comput. Oper. Res., 39 (2012), 1872-1878.  doi: 10.1016/j.cor.2011.07.009.
    [38] M. WangL. D. Zhao and M. Herty, Joint replenishement and carbon trading in fresh food supply chains, Eur. J. Oper. Res., 277 (2019), 561-573.  doi: 10.1016/j.ejor.2019.03.004.
    [39] T. Wright, Factors affecting the cost of airplanes, J. Aeronaut. Sci., 3 (1936), 122-128.  doi: 10.2514/8.155.
    [40] C. F. Wu and Q. H. Zhao, An uncoorperative ordering policy with time-varying price and learning curve for time-varying demand under trade credit, Eur. J. Ind. Eng., 11 (2017), 380-402. 
    [41] J. C. P. Yu, A collaborative strategy for deteriorating inventory system with imperfect items and supplier credits, Int. J. Prod. Econ., 143 (2013), 403-409. 
    [42] S. ZanoniM. Y. Jaber and L. E. Zavanella, Vendor managed inventory (VMI) with consignment considering learning and forgetting effects, Int. J. Prod. Econ., 140 (2012), 721-730.  doi: 10.1016/j.ijpe.2011.08.018.
    [43] J. ZhangJ. LiL. Lu and R. Dai, Supply chain performance for deteriorating items with cooperative advertising, J. Syst. Sci. Syst. Eng., 26 (2017), 23-49.  doi: 10.1007/s11518-015-5279-8.
    [44] J. X. ZhangG. W. LiuQ. Zhang and Z. Y. Bai, Coordinating a supply chain for deteriorating items with a revenue sharing and cooperative investment contract, Omega, 56 (2015), 37-49.  doi: 10.1016/j.omega.2015.03.004.
    [45] S. Zhang and J. Zhang, Contract preference with stochastic cost leanring in a two-period supply chain under asymmetric information, Int. J. Prod. Econ., 196 (2018), 226-247. 
  • 加载中

Figures(6)

Tables(4)

SHARE

Article Metrics

HTML views(2195) PDF downloads(389) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return