doi: 10.3934/jimo.2020126

Impact of cap-and-trade regulation on coordinating perishable products supply chain with cost learning

1. 

School of Management, Qufu Normal University, Rizhao, Shandong, 276826, China

2. 

Department of Health Services and Outcomes Research, National Healthcare Group, Singapore 138543

3. 

School of Management, Wuhan Textile University, Wuhan, Hubei, 430200, China

* Corresponding author: Fanwen Meng

Received  January 2020 Revised  March 2020 Published  June 2020

Fund Project: The research is partly supported by the National Natural Science Foundation of China under grants 71771138, 71702087 and 71701154, Humanities and Social Sciences Youth Foundation of Ministry of Education of China under grant 17YJC630004, Special Foundation for Taishan Scholars of Shandong Province, China under Grant tsqn201812061, and Science and Technology Research Program for Higher Education of Shandong Province, China under Grant 2019KJI006

This paper incorporates carbon emission regulation and cost learning effects to examine a manufacturer-retailer supply chain for deteriorating items over a multi-period planning horizon. We investigate their impacts on supply chain coordination under the assumption that the product demand is affected by the selling price, promotional effort and inventory level. We first propose two algorithms for determining optimal solutions of the centralized and decentralized models. We show that the decentralized system can be coordinated perfectly with a two-part tariff contract. Further, we study necessary conditions under which members of the supply chain can accept this contract. At last, we conduct numerical experiment to illustrate the obtained theoretical results in impact analysis and the robustness of the coordinated model.

Citation: Qingguo Bai, Jianteng Xu, Fanwen Meng, Niu Yu. Impact of cap-and-trade regulation on coordinating perishable products supply chain with cost learning. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020126
References:
[1]

Q. G. BaiM. Y. Chen and L. Xu, Revenue and promotional cost-sharing contract versus two-part tariff contract in coordinating sustainable supply chain systems with deteriorating items, Int. J. Prod. Econ., 187 (2017), 85-101.   Google Scholar

[2]

Q. G. BaiY. M. GongM. Z. Jin and X. H. Xu, Effects of carbon emission reduction on supply chain coordination with vendor-managed deteriorating product inventory, Int. J. Prod. Econ., 208 (2019), 83-99.  doi: 10.1016/j.ijpe.2018.11.008.  Google Scholar

[3]

Q. G. BaiX. H. XuJ. T. Xu and D. Wang, Coordinating a supply chain for deteriorating items with multi-factor-dependent demand over a finite planning horizon, Appl. Math. Model., 40 (2016), 9342-9361.  doi: 10.1016/j.apm.2016.06.021.  Google Scholar

[4]

K. Biel and C. H. Glock, Governing the dynamics of multi-stage production systems subjects to learning and forgetting effects: A simulation study, Int. J. Prod. Res., 56 (2018), 3439-3461.  doi: 10.1080/00207543.2017.1338780.  Google Scholar

[5]

A. Burnetas and P. Ritchken, Option pricing with downward-sloping demand curves: The case of supply chain options, Manage. Sci., 51 (2015), 566-580.  doi: 10.1287/mnsc.1040.0342.  Google Scholar

[6]

L. T. Chen and C. C. Wei, Multi-period channel coordination in vendor-managed inventory for deteriorating goods, Int. J. Prod. Res., 50 (2012), 4396-4413.  doi: 10.1080/00207543.2011.592159.  Google Scholar

[7]

T. H. Chen and Y. C. Tsao, Optimal lot-sizing integration policy under learning and rework effects in a manufacturer-retailer chain, Int. J. Prod. Econ., 155 (2014), 239-248.  doi: 10.1016/j.ijpe.2014.02.011.  Google Scholar

[8]

S. H. Chung and C. Kwon, Integrated supply chain management for perishable products: Dynamics and oligopolistic competition perspectives with application to pharmaceuticals, Int. J. Prod. Econ., 179 (2016), 117-129.  doi: 10.1016/j.ijpe.2016.05.021.  Google Scholar

[9]

S. F. DuL. Hu and M. L. Song, Production optimization considering environmental performance and preference in the cap-and-trade system, J. Clean. Prod., 112 (2016), 1600-1607.  doi: 10.1016/j.jclepro.2014.08.086.  Google Scholar

[10]

C.-Y. Dye, Optimal joint dynamic pricing, advertising and inventory control model for perishable items with psychic stcok effect, Eur. J. Oper. Res., 283 (2020), 576-587.  doi: 10.1016/j.ejor.2019.11.008.  Google Scholar

[11]

European Commission, (2013), https://ec.europa.eu/clima/policies/ets_en. Google Scholar

[12]

L. Feng and Y.-L. Chan, Joint pricing and producdtion decisions for new products with learning curve effects under upstream and downstream trade credits., Eur. J. Oper. Res., 272 (2019), 905-913.  doi: 10.1016/j.ejor.2018.07.003.  Google Scholar

[13]

Q. Feng and L. X. Lu, Supply chain contracting under competition: Bilateral bargaining vs. stackelberg, Prod. Oper. Manag., 22 (2013), 661-675.   Google Scholar

[14]

B. C. Giri and S. Bardhan, Supply chain coordination for a deteriorating item with stock and price-dependent demand under revenue sharing contract, Int. T. Oper. Res., 19 (2012), 753-768.  doi: 10.1111/j.1475-3995.2011.00833.x.  Google Scholar

[15]

B. C. Giri and C. H. Glock, A closed-loop supply chain with stochastic product returns and worker experience under learning and forgetting, Int. J. Prod. Res., 55 (2017), 6760-6778.  doi: 10.1080/00207543.2017.1347301.  Google Scholar

[16]

C. H. Glock and M. Y. Jaber, A multi-stage production-inventory model with learning and forgetting effects, rework and scrap, Comput. Ind. Eng., 64 (2013), 708-720.  doi: 10.1016/j.cie.2012.08.018.  Google Scholar

[17]

H. Gurnani and M. Erkoc, Supply contracts in manufacturer-retailer interactions with manufacturer-quality and retailer effort-induced demand, Nav. Res. Log., 55 (2008), 200-217.  doi: 10.1002/nav.20277.  Google Scholar

[18]

T.-W. Hung and P.-T. Chen, On the optimal replenishment in a finite planning horizon with learning effect of setup costs, J. Ind. Manag. Optim., 6 (2010), 425-433.  doi: 10.3934/jimo.2010.6.425.  Google Scholar

[19]

M. Y. Jaber and A. L. Guiffrida, Learning curves for imperfect production processes with reworks and process restoration interruptions, Eur. J. Oper. Res., 189 (2008), 93-104.  doi: 10.1016/j.ejor.2007.05.024.  Google Scholar

[20]

M. Y. Jaber and A. M. A. EI Saadany, An economic production and remanufacturing model with learning effects, Int. J. Prod. Econ., 131 (2011), 115-127.   Google Scholar

[21]

N. KazemiE. U. OluguS. H. Abdul-Rashid and R. A. R. Ghazilla, A fuzzy EOQ model with backorders and forgetting effect on fuzzy parameters: An empirical study, Comput. Ind. Eng., 96 (2016), 140-148.  doi: 10.1016/j.cie.2016.03.004.  Google Scholar

[22]

N. KazemiE. ShekarianL. E. Cárdenas-Barrón and E. U. Olugu, Incorporating human learning into a fuzzy EOQ inventory model with backorders, Comput. Ind. Eng., 87 (2015), 540-542.  doi: 10.1016/j.cie.2015.05.014.  Google Scholar

[23]

M. KhanM. Hussain and L. E. C$\acute{a}$rdenas-Barr$\acute{o}$n, Learning and screening errors in an EPQ inventory model for supply chains with stochatic lead time demands, Int. J. Prod. Res., 55 (2017), 4816-4832.   Google Scholar

[24]

M. KhanM. Y. Jaber and A. R. Ahmad, An integrated supply chain model with errors in quality inspection and learning in production, Omega, 42 (2014), 16-24.  doi: 10.1016/j.omega.2013.02.002.  Google Scholar

[25]

K. KoganF. EI Ouardighi and A. Herbon, Production with learing and forgetting in a competitive environment, Int. J. Prod. Econ., 189 (2017), 52-62.   Google Scholar

[26]

T. LiS. P. Sethi and X. L. He, Dynamic pricing, production, and channel coordination with stochastic learning, Prod. Oper. Manag., 24 (2015), 857-882.  doi: 10.1111/poms.12320.  Google Scholar

[27]

C. Lin and Y. Lin, A cooperative inventory policy with deteriorating items for a two-echelon model, Eur. J. Oper. Res., 178 (2007), 92-111.  doi: 10.1016/j.ejor.2006.01.012.  Google Scholar

[28]

J. R. Luo and X. Chen, Coordination of random yield supply chains with improved revenue sharing contracts, Eur. J. Ind. Eng., 10 (2016), 81-102.  doi: 10.1504/EJIE.2016.075105.  Google Scholar

[29]

Z. LuoX. Chen and X. J. Wang, The role of co-opetition in low carbon manufacturing, Eur. J. Oper. Res., 253 (2016), 392-403.  doi: 10.1016/j.ejor.2016.02.030.  Google Scholar

[30]

B. Lus and A. Muriel, Measuring the impact of increased product substitution on pricing and capacity decisions under linear demand models, Prod. Oper. Manag., 18 (2009), 95-113.  doi: 10.1111/j.1937-5956.2009.01001.x.  Google Scholar

[31]

L. Moussawi-HaidarM. Salameh and W. Nasr, Production lot sizing with qualtiy screening and rework, Appl. Math. Model., 40 (2016), 3242-3256.  doi: 10.1016/j.apm.2015.09.095.  Google Scholar

[32]

E. L. Plambeck, Reducing greenhouse gas emissions through operations and supply chain management, Energ. Econ., 34 (2012), s64–s74. doi: 10.1016/j.eneco.2012.08.031.  Google Scholar

[33]

B. R. Sarker and B. Wu, Optimal models for a single-producer multi-buyer integrated system of deteriorating items with raw materials storage costs, Int. J. Adv. Manu. Tech., 82 (2016), 49-63.  doi: 10.1007/s00170-015-7340-7.  Google Scholar

[34]

G. Taguchi, Tables of orthogonal arrays and linear graphs, Rep. Statist. Appl. Res. Un. Japan. Sci. Engrs., 7 (1960), 1-52.   Google Scholar

[35]

G. Taguchi, System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Costs, Kraus International, White Plains, NY, 1987. Google Scholar

[36]

J.-T. TengK.-R. Lou and L. Wang, Optimal trade credit and lot size policies in economic production quantity models with learning curve production costs, Int. J. Prod. Econ., 155 (2014), 318-323.  doi: 10.1016/j.ijpe.2013.10.012.  Google Scholar

[37]

Y.-C. Tsao and G.-J. Sheen, Effects of promotion cost sharing policy with the sales learning curve on supply chain coordination, Comput. Oper. Res., 39 (2012), 1872-1878.  doi: 10.1016/j.cor.2011.07.009.  Google Scholar

[38]

M. WangL. D. Zhao and M. Herty, Joint replenishement and carbon trading in fresh food supply chains, Eur. J. Oper. Res., 277 (2019), 561-573.  doi: 10.1016/j.ejor.2019.03.004.  Google Scholar

[39]

T. Wright, Factors affecting the cost of airplanes, J. Aeronaut. Sci., 3 (1936), 122-128.  doi: 10.2514/8.155.  Google Scholar

[40]

C. F. Wu and Q. H. Zhao, An uncoorperative ordering policy with time-varying price and learning curve for time-varying demand under trade credit, Eur. J. Ind. Eng., 11 (2017), 380-402.   Google Scholar

[41]

J. C. P. Yu, A collaborative strategy for deteriorating inventory system with imperfect items and supplier credits, Int. J. Prod. Econ., 143 (2013), 403-409.   Google Scholar

[42]

S. ZanoniM. Y. Jaber and L. E. Zavanella, Vendor managed inventory (VMI) with consignment considering learning and forgetting effects, Int. J. Prod. Econ., 140 (2012), 721-730.  doi: 10.1016/j.ijpe.2011.08.018.  Google Scholar

[43]

J. ZhangJ. LiL. Lu and R. Dai, Supply chain performance for deteriorating items with cooperative advertising, J. Syst. Sci. Syst. Eng., 26 (2017), 23-49.  doi: 10.1007/s11518-015-5279-8.  Google Scholar

[44]

J. X. ZhangG. W. LiuQ. Zhang and Z. Y. Bai, Coordinating a supply chain for deteriorating items with a revenue sharing and cooperative investment contract, Omega, 56 (2015), 37-49.  doi: 10.1016/j.omega.2015.03.004.  Google Scholar

[45]

S. Zhang and J. Zhang, Contract preference with stochastic cost leanring in a two-period supply chain under asymmetric information, Int. J. Prod. Econ., 196 (2018), 226-247.   Google Scholar

show all references

References:
[1]

Q. G. BaiM. Y. Chen and L. Xu, Revenue and promotional cost-sharing contract versus two-part tariff contract in coordinating sustainable supply chain systems with deteriorating items, Int. J. Prod. Econ., 187 (2017), 85-101.   Google Scholar

[2]

Q. G. BaiY. M. GongM. Z. Jin and X. H. Xu, Effects of carbon emission reduction on supply chain coordination with vendor-managed deteriorating product inventory, Int. J. Prod. Econ., 208 (2019), 83-99.  doi: 10.1016/j.ijpe.2018.11.008.  Google Scholar

[3]

Q. G. BaiX. H. XuJ. T. Xu and D. Wang, Coordinating a supply chain for deteriorating items with multi-factor-dependent demand over a finite planning horizon, Appl. Math. Model., 40 (2016), 9342-9361.  doi: 10.1016/j.apm.2016.06.021.  Google Scholar

[4]

K. Biel and C. H. Glock, Governing the dynamics of multi-stage production systems subjects to learning and forgetting effects: A simulation study, Int. J. Prod. Res., 56 (2018), 3439-3461.  doi: 10.1080/00207543.2017.1338780.  Google Scholar

[5]

A. Burnetas and P. Ritchken, Option pricing with downward-sloping demand curves: The case of supply chain options, Manage. Sci., 51 (2015), 566-580.  doi: 10.1287/mnsc.1040.0342.  Google Scholar

[6]

L. T. Chen and C. C. Wei, Multi-period channel coordination in vendor-managed inventory for deteriorating goods, Int. J. Prod. Res., 50 (2012), 4396-4413.  doi: 10.1080/00207543.2011.592159.  Google Scholar

[7]

T. H. Chen and Y. C. Tsao, Optimal lot-sizing integration policy under learning and rework effects in a manufacturer-retailer chain, Int. J. Prod. Econ., 155 (2014), 239-248.  doi: 10.1016/j.ijpe.2014.02.011.  Google Scholar

[8]

S. H. Chung and C. Kwon, Integrated supply chain management for perishable products: Dynamics and oligopolistic competition perspectives with application to pharmaceuticals, Int. J. Prod. Econ., 179 (2016), 117-129.  doi: 10.1016/j.ijpe.2016.05.021.  Google Scholar

[9]

S. F. DuL. Hu and M. L. Song, Production optimization considering environmental performance and preference in the cap-and-trade system, J. Clean. Prod., 112 (2016), 1600-1607.  doi: 10.1016/j.jclepro.2014.08.086.  Google Scholar

[10]

C.-Y. Dye, Optimal joint dynamic pricing, advertising and inventory control model for perishable items with psychic stcok effect, Eur. J. Oper. Res., 283 (2020), 576-587.  doi: 10.1016/j.ejor.2019.11.008.  Google Scholar

[11]

European Commission, (2013), https://ec.europa.eu/clima/policies/ets_en. Google Scholar

[12]

L. Feng and Y.-L. Chan, Joint pricing and producdtion decisions for new products with learning curve effects under upstream and downstream trade credits., Eur. J. Oper. Res., 272 (2019), 905-913.  doi: 10.1016/j.ejor.2018.07.003.  Google Scholar

[13]

Q. Feng and L. X. Lu, Supply chain contracting under competition: Bilateral bargaining vs. stackelberg, Prod. Oper. Manag., 22 (2013), 661-675.   Google Scholar

[14]

B. C. Giri and S. Bardhan, Supply chain coordination for a deteriorating item with stock and price-dependent demand under revenue sharing contract, Int. T. Oper. Res., 19 (2012), 753-768.  doi: 10.1111/j.1475-3995.2011.00833.x.  Google Scholar

[15]

B. C. Giri and C. H. Glock, A closed-loop supply chain with stochastic product returns and worker experience under learning and forgetting, Int. J. Prod. Res., 55 (2017), 6760-6778.  doi: 10.1080/00207543.2017.1347301.  Google Scholar

[16]

C. H. Glock and M. Y. Jaber, A multi-stage production-inventory model with learning and forgetting effects, rework and scrap, Comput. Ind. Eng., 64 (2013), 708-720.  doi: 10.1016/j.cie.2012.08.018.  Google Scholar

[17]

H. Gurnani and M. Erkoc, Supply contracts in manufacturer-retailer interactions with manufacturer-quality and retailer effort-induced demand, Nav. Res. Log., 55 (2008), 200-217.  doi: 10.1002/nav.20277.  Google Scholar

[18]

T.-W. Hung and P.-T. Chen, On the optimal replenishment in a finite planning horizon with learning effect of setup costs, J. Ind. Manag. Optim., 6 (2010), 425-433.  doi: 10.3934/jimo.2010.6.425.  Google Scholar

[19]

M. Y. Jaber and A. L. Guiffrida, Learning curves for imperfect production processes with reworks and process restoration interruptions, Eur. J. Oper. Res., 189 (2008), 93-104.  doi: 10.1016/j.ejor.2007.05.024.  Google Scholar

[20]

M. Y. Jaber and A. M. A. EI Saadany, An economic production and remanufacturing model with learning effects, Int. J. Prod. Econ., 131 (2011), 115-127.   Google Scholar

[21]

N. KazemiE. U. OluguS. H. Abdul-Rashid and R. A. R. Ghazilla, A fuzzy EOQ model with backorders and forgetting effect on fuzzy parameters: An empirical study, Comput. Ind. Eng., 96 (2016), 140-148.  doi: 10.1016/j.cie.2016.03.004.  Google Scholar

[22]

N. KazemiE. ShekarianL. E. Cárdenas-Barrón and E. U. Olugu, Incorporating human learning into a fuzzy EOQ inventory model with backorders, Comput. Ind. Eng., 87 (2015), 540-542.  doi: 10.1016/j.cie.2015.05.014.  Google Scholar

[23]

M. KhanM. Hussain and L. E. C$\acute{a}$rdenas-Barr$\acute{o}$n, Learning and screening errors in an EPQ inventory model for supply chains with stochatic lead time demands, Int. J. Prod. Res., 55 (2017), 4816-4832.   Google Scholar

[24]

M. KhanM. Y. Jaber and A. R. Ahmad, An integrated supply chain model with errors in quality inspection and learning in production, Omega, 42 (2014), 16-24.  doi: 10.1016/j.omega.2013.02.002.  Google Scholar

[25]

K. KoganF. EI Ouardighi and A. Herbon, Production with learing and forgetting in a competitive environment, Int. J. Prod. Econ., 189 (2017), 52-62.   Google Scholar

[26]

T. LiS. P. Sethi and X. L. He, Dynamic pricing, production, and channel coordination with stochastic learning, Prod. Oper. Manag., 24 (2015), 857-882.  doi: 10.1111/poms.12320.  Google Scholar

[27]

C. Lin and Y. Lin, A cooperative inventory policy with deteriorating items for a two-echelon model, Eur. J. Oper. Res., 178 (2007), 92-111.  doi: 10.1016/j.ejor.2006.01.012.  Google Scholar

[28]

J. R. Luo and X. Chen, Coordination of random yield supply chains with improved revenue sharing contracts, Eur. J. Ind. Eng., 10 (2016), 81-102.  doi: 10.1504/EJIE.2016.075105.  Google Scholar

[29]

Z. LuoX. Chen and X. J. Wang, The role of co-opetition in low carbon manufacturing, Eur. J. Oper. Res., 253 (2016), 392-403.  doi: 10.1016/j.ejor.2016.02.030.  Google Scholar

[30]

B. Lus and A. Muriel, Measuring the impact of increased product substitution on pricing and capacity decisions under linear demand models, Prod. Oper. Manag., 18 (2009), 95-113.  doi: 10.1111/j.1937-5956.2009.01001.x.  Google Scholar

[31]

L. Moussawi-HaidarM. Salameh and W. Nasr, Production lot sizing with qualtiy screening and rework, Appl. Math. Model., 40 (2016), 3242-3256.  doi: 10.1016/j.apm.2015.09.095.  Google Scholar

[32]

E. L. Plambeck, Reducing greenhouse gas emissions through operations and supply chain management, Energ. Econ., 34 (2012), s64–s74. doi: 10.1016/j.eneco.2012.08.031.  Google Scholar

[33]

B. R. Sarker and B. Wu, Optimal models for a single-producer multi-buyer integrated system of deteriorating items with raw materials storage costs, Int. J. Adv. Manu. Tech., 82 (2016), 49-63.  doi: 10.1007/s00170-015-7340-7.  Google Scholar

[34]

G. Taguchi, Tables of orthogonal arrays and linear graphs, Rep. Statist. Appl. Res. Un. Japan. Sci. Engrs., 7 (1960), 1-52.   Google Scholar

[35]

G. Taguchi, System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Costs, Kraus International, White Plains, NY, 1987. Google Scholar

[36]

J.-T. TengK.-R. Lou and L. Wang, Optimal trade credit and lot size policies in economic production quantity models with learning curve production costs, Int. J. Prod. Econ., 155 (2014), 318-323.  doi: 10.1016/j.ijpe.2013.10.012.  Google Scholar

[37]

Y.-C. Tsao and G.-J. Sheen, Effects of promotion cost sharing policy with the sales learning curve on supply chain coordination, Comput. Oper. Res., 39 (2012), 1872-1878.  doi: 10.1016/j.cor.2011.07.009.  Google Scholar

[38]

M. WangL. D. Zhao and M. Herty, Joint replenishement and carbon trading in fresh food supply chains, Eur. J. Oper. Res., 277 (2019), 561-573.  doi: 10.1016/j.ejor.2019.03.004.  Google Scholar

[39]

T. Wright, Factors affecting the cost of airplanes, J. Aeronaut. Sci., 3 (1936), 122-128.  doi: 10.2514/8.155.  Google Scholar

[40]

C. F. Wu and Q. H. Zhao, An uncoorperative ordering policy with time-varying price and learning curve for time-varying demand under trade credit, Eur. J. Ind. Eng., 11 (2017), 380-402.   Google Scholar

[41]

J. C. P. Yu, A collaborative strategy for deteriorating inventory system with imperfect items and supplier credits, Int. J. Prod. Econ., 143 (2013), 403-409.   Google Scholar

[42]

S. ZanoniM. Y. Jaber and L. E. Zavanella, Vendor managed inventory (VMI) with consignment considering learning and forgetting effects, Int. J. Prod. Econ., 140 (2012), 721-730.  doi: 10.1016/j.ijpe.2011.08.018.  Google Scholar

[43]

J. ZhangJ. LiL. Lu and R. Dai, Supply chain performance for deteriorating items with cooperative advertising, J. Syst. Sci. Syst. Eng., 26 (2017), 23-49.  doi: 10.1007/s11518-015-5279-8.  Google Scholar

[44]

J. X. ZhangG. W. LiuQ. Zhang and Z. Y. Bai, Coordinating a supply chain for deteriorating items with a revenue sharing and cooperative investment contract, Omega, 56 (2015), 37-49.  doi: 10.1016/j.omega.2015.03.004.  Google Scholar

[45]

S. Zhang and J. Zhang, Contract preference with stochastic cost leanring in a two-period supply chain under asymmetric information, Int. J. Prod. Econ., 196 (2018), 226-247.   Google Scholar

Figure 1.  Graphical representation of inventory level at the retailer
Figure 2.  Intervals of contract parameters to attain the win-win outcome
Figure 3.  Impacts of $ C $ on profit and total emissions amount
Figure 4.  Impacts of $ c_{p} $ on profit and total emissions amount
Figure 5.  Impacts of $ \phi $ on profit and total emissions amount
Figure 6.  Effects plot for the SN ratio of the coordination system
Table 1.  The optimal solution of the example
Model $ w $ $ s $ $ p $ $ n $ Retailer's Manufacturer's Total Total emissions
profit profit profit amount
Centralized - 12.15 213.75 3 - - 25589.00 285270
Decentralized 56.76 6.08 256.88 3 3622.10 17045.00 20667.10 142640
TT contract
$ F=9850 $ 50 12.15 213.75 3 8539.00 17050.00 25589.00 285270
$ F=12000 $ 50 12.15 213.75 3 6389.00 19200.00 25589.00 285270
$ F=14750 $ 50 12.15 213.75 3 3639.00 21950.00 25589.00 285270
Model $ w $ $ s $ $ p $ $ n $ Retailer's Manufacturer's Total Total emissions
profit profit profit amount
Centralized - 12.15 213.75 3 - - 25589.00 285270
Decentralized 56.76 6.08 256.88 3 3622.10 17045.00 20667.10 142640
TT contract
$ F=9850 $ 50 12.15 213.75 3 8539.00 17050.00 25589.00 285270
$ F=12000 $ 50 12.15 213.75 3 6389.00 19200.00 25589.00 285270
$ F=14750 $ 50 12.15 213.75 3 3639.00 21950.00 25589.00 285270
Table 2.  Calculation results of $ L_{8} $ orthogonal array experiment for the coordination model
No. A B C D E Total profit SN ratio of Total emissions SN ratio of total
$ h_{r} $ $ \theta $ $ \phi $ $ C $ $ c_{p} $ total profit amount emissions amount
1 1 1 1 1 1 43394 92.75 284600 -109.085
2 1 1 1 2 2 38191 91.64 309080 -109.801
3 1 2 2 1 1 15727 83.93 259150 -108.271
4 1 2 2 2 2 6371 76.08 280390 -108.955
5 2 1 2 1 2 39551 91.94 314060 -109.940
6 2 1 2 2 1 32531 90.25 289570 -109.235
7 2 2 1 1 2 15409 83.76 284830 -109.092
8 2 2 1 2 1 13943 82.89 263590 -108.419
No. A B C D E Total profit SN ratio of Total emissions SN ratio of total
$ h_{r} $ $ \theta $ $ \phi $ $ C $ $ c_{p} $ total profit amount emissions amount
1 1 1 1 1 1 43394 92.75 284600 -109.085
2 1 1 1 2 2 38191 91.64 309080 -109.801
3 1 2 2 1 1 15727 83.93 259150 -108.271
4 1 2 2 2 2 6371 76.08 280390 -108.955
5 2 1 2 1 2 39551 91.94 314060 -109.940
6 2 1 2 2 1 32531 90.25 289570 -109.235
7 2 2 1 1 2 15409 83.76 284830 -109.092
8 2 2 1 2 1 13943 82.89 263590 -108.419
Table 3.  Analysis of variance for the total profits and its SN ratio
(a) Analysis of variance for the total profits
Source df SS($ \times10^{8} $) MS($ \times10^{8} $) F P
A 1 0.0063 0.0063 0.11 0.776
B 1 13.0604 13.0604 217.25 0.005
C 1 0.3510 0.3510 5.84 0.137
D 1 0.6639 0.6639 11.04 0.080
E 1 0.0461 0.0461 0.77 0.474
Error 2 0.1202 0.0601 - -
Total 7 14.2480 - - -
(b) Analysis of variance for the SN ratio of the total profits
Source df SS MS F P
A 1 2.450 2.450 0.43 0.581
B 1 199.178 199.178 34.55 0.028
C 1 9.734 9.734 1.69 0.323
D 1 16.603 16.603 2.88 0.232
E 1 5.109 5.109 0.89 0.446
Error 2 11.529 5.765 - -
Total 7 244.604 - - -
(a) Analysis of variance for the total profits
Source df SS($ \times10^{8} $) MS($ \times10^{8} $) F P
A 1 0.0063 0.0063 0.11 0.776
B 1 13.0604 13.0604 217.25 0.005
C 1 0.3510 0.3510 5.84 0.137
D 1 0.6639 0.6639 11.04 0.080
E 1 0.0461 0.0461 0.77 0.474
Error 2 0.1202 0.0601 - -
Total 7 14.2480 - - -
(b) Analysis of variance for the SN ratio of the total profits
Source df SS MS F P
A 1 2.450 2.450 0.43 0.581
B 1 199.178 199.178 34.55 0.028
C 1 9.734 9.734 1.69 0.323
D 1 16.603 16.603 2.88 0.232
E 1 5.109 5.109 0.89 0.446
Error 2 11.529 5.765 - -
Total 7 244.604 - - -
Table 4.  Analysis of variance for the carbon emissions and its SN ratio
(a) Analysis of variance for the carbon emissions
Source df SS($ \times10^{8} $) MS($ \times10^{8} $) F P
A 1 0.4432 0.4432 16.84 0.055
B 1 14.9468 14.9468 567.78 0.002
C 1 0.0014 0.0014 0.05 0.837
D 1 0.0000 0.0000 0.00 0.998
E 1 10.4539 10.4539 397.11 0.003
Error 2 0.0527 0.0263 - -
Total 7 25.8979 - - -
(b) Analysis of variance for the SN ratio of the carbon emissions
Source df SS MS F P
A 1 0.0411 0.04107 157.77 0.006
B 1 1.3819 1.3819 5307.76 0.000
C 1 0.0000 0.0000 0.01 0.920
D 1 0.0001 0.0001 0.25 0.669
E 1 0.9655 0.9655 3708.69 0.000
Error 2 0.0005 0.0003 - -
Total 7 2.3891 - - -
(a) Analysis of variance for the carbon emissions
Source df SS($ \times10^{8} $) MS($ \times10^{8} $) F P
A 1 0.4432 0.4432 16.84 0.055
B 1 14.9468 14.9468 567.78 0.002
C 1 0.0014 0.0014 0.05 0.837
D 1 0.0000 0.0000 0.00 0.998
E 1 10.4539 10.4539 397.11 0.003
Error 2 0.0527 0.0263 - -
Total 7 25.8979 - - -
(b) Analysis of variance for the SN ratio of the carbon emissions
Source df SS MS F P
A 1 0.0411 0.04107 157.77 0.006
B 1 1.3819 1.3819 5307.76 0.000
C 1 0.0000 0.0000 0.01 0.920
D 1 0.0001 0.0001 0.25 0.669
E 1 0.9655 0.9655 3708.69 0.000
Error 2 0.0005 0.0003 - -
Total 7 2.3891 - - -
[1]

Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020165

[2]

Wei Chen, Yongkai Ma, Weihao Hu. Electricity supply chain coordination with carbon abatement technology investment under the benchmarking mechanism. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020175

[3]

Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020181

[4]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[5]

Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020173

[6]

Wenyan Zhuo, Honglin Yang, Leopoldo Eduardo Cárdenas-Barrón, Hong Wan. Loss-averse supply chain decisions with a capital constrained retailer. Journal of Industrial & Management Optimization, 2021, 17 (2) : 711-732. doi: 10.3934/jimo.2019131

[7]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[8]

Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172

[9]

Hongxia Sun, Yao Wan, Yu Li, Linlin Zhang, Zhen Zhou. Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours. Journal of Industrial & Management Optimization, 2021, 17 (2) : 601-631. doi: 10.3934/jimo.2019125

[10]

Xiao-Xu Chen, Peng Xu, Jiao-Jiao Li, Thomas Walker, Guo-Qiang Yang. Decision-making in a retailer-led closed-loop supply chain involving a third-party logistics provider. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021014

[11]

Gernot Holler, Karl Kunisch. Learning nonlocal regularization operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021003

[12]

Onur Şimşek, O. Erhun Kundakcioglu. Cost of fairness in agent scheduling for contact centers. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021001

[13]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[14]

Musen Xue, Guowei Zhu. Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items. Journal of Industrial & Management Optimization, 2021, 17 (2) : 633-648. doi: 10.3934/jimo.2019126

[15]

Nicholas Geneva, Nicholas Zabaras. Multi-fidelity generative deep learning turbulent flows. Foundations of Data Science, 2020, 2 (4) : 391-428. doi: 10.3934/fods.2020019

[16]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[17]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

[18]

Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1079-1092. doi: 10.3934/dcdss.2020352

[19]

Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373

[20]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]