
-
Previous Article
An alternative tree method for calibration of the local volatility
- JIMO Home
- This Issue
-
Next Article
Coordination of a supply chain with a loss-averse retailer under supply uncertainty and marketing effort
A polyhedral conic functions based classification method for noisy data
Department of Industrial Engineering, Faculty of Engineering, Eskisehir Technical University Eskisehir, 26555, Turkey |
This paper presents a robust binary classification method, which is an extended version of the Modified Polyhedral Conic Functions (M-PCF) algorithm, earlier developed by Gasimov and Ozturk. The new version presented in this paper, has new features in comparison to the original algorithm. The mathematical model used in the new version, is relaxed by allowing some inaccuracies in an optimal way. By this way, it is aimed to reduce the overfitting and improve the generalization property. In the original version, the sublevel set of a separating function generated at every iteration, does not contain any element of the other set. This is changed in the new version, where the sublevel sets of separating functions generated by the new algorithm, are allowed to contain some elements from other set. On the other hand, the new algorithm uses a tolerance parameter which prevents generating "less productive separating functions". In the original version, the algorithm continues till all points of the "first" set are separated from the second one, where a separating function is generated if there still exist unseparated elements regardless the number of such elements. In the new version, the tolerance parameter is used to terminate iterations if there are only a few unseparated elements. By this way, it is aimed to improve the generalization property of the algorithm, and therefore the new version is called Parameterized Polyhedral Conic Functions (P-PCF) method. The performance and efficiency of the proposed algorithm is demonstrated on well-known datasets from the literature and on noisy data.
References:
[1] |
A. Astorino and M. Gaudioso,
Polyhedral separability through successive LP, Journal of Optimization Theory and Applications, 112 (2002), 265-293.
doi: 10.1023/A:1013649822153. |
[2] |
K. Bache and M. Lichman, UCI Machine Learning Repository. University of California, School of Information and Computer Science, (2013)., http://archive.ics.uci.edu/ml Google Scholar |
[3] |
A. M. Bagirov,
Max–min separability, Optimization Methods and Software, 20 (2005), 277-296.
doi: 10.1080/10556780512331318263. |
[4] |
A. M. Bagirov, G. Ozturk and R. Kasimbeyli,
A sharp augmented Lagrangian-based method in constrained non-convex optimization, Optimization Methods and Software, 34 (2019), 462-488.
doi: 10.1080/10556788.2018.1496431. |
[5] |
A. M. Bagirov, J. Ugon, D. Webb, G. Ozturk and and R. Kasimbeyli,
A novel piecewise linear classifier based on polyhedral conic and max–min separabilities, TOP, 21 (2013), 3-24.
doi: 10.1007/s11750-011-0241-5. |
[6] |
K. P. Bennett and O. L. Mangasarian, Robust linear programming discrimination of two linearly inseparable sets, Optimization Methods and Software, 1 (1992), 23-34. Google Scholar |
[7] |
C. E. Brodley and M. A. Friedl, Identifying mislabeled training data, Journal of Artificial Intelligence Research, 11 (1999), 131-167. Google Scholar |
[8] |
E. Cimen and G. Ozturk, O-PCF algorithm for one-class classification, Optimization Methods and Software, (2019), 1–15. Google Scholar |
[9] |
W. W. Cohen, Fast effective rule induction, Proceedings of the Twelfth International Conference on Machine Learning, ML95, San Francisco, CA, 115–123. Google Scholar |
[10] |
C. Cortes and V. Vapnik,
Support-vector networks, Machine Learning, 20 (1995), 273-297.
doi: 10.1007/BF00994018. |
[11] |
R. N. Gasimov and G. Ozturk,
Separation via polyhedral conic functions, Optimization Methods and Software, 21 (2006), 527-540.
doi: 10.1080/10556780600723252. |
[12] |
R. N. Gasimov and O. Ustun,
Solving the quadratic assignment problem using F-MSG algorithm, Journal of Industrial and Management Optimization, 3 (2007), 173-191.
doi: 10.3934/jimo.2007.3.173. |
[13] |
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann and I. H. Witten, The WEKA data mining software: An update, SIGKDD Explorations, 11 (2003), 10-18. Google Scholar |
[14] |
N. Kasimbeyli and R. Kasimbeyli,
A representation theorem for Bishop-Phelps cones, Pacific Journal of Optimization, 13 (2017), 55-74.
|
[15] |
R. Kasimbeyli,
A nonlinear cone separation theorem and scalarization in nonconvex vector optimization, SIAM Journal on Optimization, 20 (2010), 1591-1619.
doi: 10.1137/070694089. |
[16] |
R. Kasimbeyli,
Radial epiderivatives and set-valued optimization, Optimization, 58 (2009), 521-534.
doi: 10.1080/02331930902928310. |
[17] |
R. Kasimbeyli and M. Karimi,
Separation theorems for nonconvex sets and application in optimization, Operations Research Letters, 47 (2019), 569-573.
doi: 10.1016/j.orl.2019.09.011. |
[18] |
R. Kasimbeyli and M. Mammadov,
Optimality conditions in nonconvex optimization via weak subdifferentials, Nonlinear Analysis: Theory, Methods and Applications, 74 (2011), 2534-2547.
doi: 10.1016/j.na.2010.12.008. |
[19] |
R. Kasimbeyli, O. Ustun and A. Rubinov,
The modified subgradient algorithm based on feasible values, Optimization, 58 (2009), 535-560.
doi: 10.1080/02331930902928419. |
[20] |
D. T. Larose and C. D. Larose, Discovering knowledge in data: An introduction to data mining, John Wiley & Sons, Hoboken, NJ, 2005. |
[21] |
C. J. Mantas and J. Abell'an, Credal-C4.5 decision tree based on imprecise probabilities to classify noisy data. Expert Systems with Applications, 41(10) (2014), 4625-4637. Google Scholar |
[22] |
G. J. McLachlan, Discriminant Analysis and Statistical Pattern Recognition, John Wiley & Sons, Inc., New York, 1992.
doi: 10.1002/0471725293. |
[23] |
G. Ozturk, A. M. Bagirov and R. Kasimbeyli,
An incremental piecewise linear classifier based on polyhedral conic separation, Machine Learning, 101 (2015), 397-413.
doi: 10.1007/s10994-014-5449-9. |
[24] |
G. Ozturk and M. T. Ciftci,
Clustering based polyhedral conic functions algorithm in classification, Journal of Industrial and Management Optimization, 11 (3) (2015), 921-932.
doi: 10.3934/jimo.2015.11.921. |
[25] |
J. R. Quinlan, The effect of noise on concept learning, Machine Learning, (1986), 149–166. Google Scholar |
[26] |
A. M. Rubinov and R. N. Gasimov,
Strictly increasing positively homogeneous functions with applications to exact penalization, Optimization, 52 (2003), 1-28.
doi: 10.1080/0233193021000058931. |
[27] |
J. A. Sáez, M. Galar, J. Luengo and F. Herrera, Tackling the problem of classification with noisy data using multiple classifier systems: Analysis of the performance and robustness, Information Sciences, 247 (2013), 1-20. Google Scholar |
[28] |
X. Zhu and X. Wu, Class noise vs. attribute noise: A quantitative study, Artificial Intelligence Review, 22 (2004), 177-210. Google Scholar |
show all references
References:
[1] |
A. Astorino and M. Gaudioso,
Polyhedral separability through successive LP, Journal of Optimization Theory and Applications, 112 (2002), 265-293.
doi: 10.1023/A:1013649822153. |
[2] |
K. Bache and M. Lichman, UCI Machine Learning Repository. University of California, School of Information and Computer Science, (2013)., http://archive.ics.uci.edu/ml Google Scholar |
[3] |
A. M. Bagirov,
Max–min separability, Optimization Methods and Software, 20 (2005), 277-296.
doi: 10.1080/10556780512331318263. |
[4] |
A. M. Bagirov, G. Ozturk and R. Kasimbeyli,
A sharp augmented Lagrangian-based method in constrained non-convex optimization, Optimization Methods and Software, 34 (2019), 462-488.
doi: 10.1080/10556788.2018.1496431. |
[5] |
A. M. Bagirov, J. Ugon, D. Webb, G. Ozturk and and R. Kasimbeyli,
A novel piecewise linear classifier based on polyhedral conic and max–min separabilities, TOP, 21 (2013), 3-24.
doi: 10.1007/s11750-011-0241-5. |
[6] |
K. P. Bennett and O. L. Mangasarian, Robust linear programming discrimination of two linearly inseparable sets, Optimization Methods and Software, 1 (1992), 23-34. Google Scholar |
[7] |
C. E. Brodley and M. A. Friedl, Identifying mislabeled training data, Journal of Artificial Intelligence Research, 11 (1999), 131-167. Google Scholar |
[8] |
E. Cimen and G. Ozturk, O-PCF algorithm for one-class classification, Optimization Methods and Software, (2019), 1–15. Google Scholar |
[9] |
W. W. Cohen, Fast effective rule induction, Proceedings of the Twelfth International Conference on Machine Learning, ML95, San Francisco, CA, 115–123. Google Scholar |
[10] |
C. Cortes and V. Vapnik,
Support-vector networks, Machine Learning, 20 (1995), 273-297.
doi: 10.1007/BF00994018. |
[11] |
R. N. Gasimov and G. Ozturk,
Separation via polyhedral conic functions, Optimization Methods and Software, 21 (2006), 527-540.
doi: 10.1080/10556780600723252. |
[12] |
R. N. Gasimov and O. Ustun,
Solving the quadratic assignment problem using F-MSG algorithm, Journal of Industrial and Management Optimization, 3 (2007), 173-191.
doi: 10.3934/jimo.2007.3.173. |
[13] |
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann and I. H. Witten, The WEKA data mining software: An update, SIGKDD Explorations, 11 (2003), 10-18. Google Scholar |
[14] |
N. Kasimbeyli and R. Kasimbeyli,
A representation theorem for Bishop-Phelps cones, Pacific Journal of Optimization, 13 (2017), 55-74.
|
[15] |
R. Kasimbeyli,
A nonlinear cone separation theorem and scalarization in nonconvex vector optimization, SIAM Journal on Optimization, 20 (2010), 1591-1619.
doi: 10.1137/070694089. |
[16] |
R. Kasimbeyli,
Radial epiderivatives and set-valued optimization, Optimization, 58 (2009), 521-534.
doi: 10.1080/02331930902928310. |
[17] |
R. Kasimbeyli and M. Karimi,
Separation theorems for nonconvex sets and application in optimization, Operations Research Letters, 47 (2019), 569-573.
doi: 10.1016/j.orl.2019.09.011. |
[18] |
R. Kasimbeyli and M. Mammadov,
Optimality conditions in nonconvex optimization via weak subdifferentials, Nonlinear Analysis: Theory, Methods and Applications, 74 (2011), 2534-2547.
doi: 10.1016/j.na.2010.12.008. |
[19] |
R. Kasimbeyli, O. Ustun and A. Rubinov,
The modified subgradient algorithm based on feasible values, Optimization, 58 (2009), 535-560.
doi: 10.1080/02331930902928419. |
[20] |
D. T. Larose and C. D. Larose, Discovering knowledge in data: An introduction to data mining, John Wiley & Sons, Hoboken, NJ, 2005. |
[21] |
C. J. Mantas and J. Abell'an, Credal-C4.5 decision tree based on imprecise probabilities to classify noisy data. Expert Systems with Applications, 41(10) (2014), 4625-4637. Google Scholar |
[22] |
G. J. McLachlan, Discriminant Analysis and Statistical Pattern Recognition, John Wiley & Sons, Inc., New York, 1992.
doi: 10.1002/0471725293. |
[23] |
G. Ozturk, A. M. Bagirov and R. Kasimbeyli,
An incremental piecewise linear classifier based on polyhedral conic separation, Machine Learning, 101 (2015), 397-413.
doi: 10.1007/s10994-014-5449-9. |
[24] |
G. Ozturk and M. T. Ciftci,
Clustering based polyhedral conic functions algorithm in classification, Journal of Industrial and Management Optimization, 11 (3) (2015), 921-932.
doi: 10.3934/jimo.2015.11.921. |
[25] |
J. R. Quinlan, The effect of noise on concept learning, Machine Learning, (1986), 149–166. Google Scholar |
[26] |
A. M. Rubinov and R. N. Gasimov,
Strictly increasing positively homogeneous functions with applications to exact penalization, Optimization, 52 (2003), 1-28.
doi: 10.1080/0233193021000058931. |
[27] |
J. A. Sáez, M. Galar, J. Luengo and F. Herrera, Tackling the problem of classification with noisy data using multiple classifier systems: Analysis of the performance and robustness, Information Sciences, 247 (2013), 1-20. Google Scholar |
[28] |
X. Zhu and X. Wu, Class noise vs. attribute noise: A quantitative study, Artificial Intelligence Review, 22 (2004), 177-210. Google Scholar |




No. | Attribute 1 | Attribute 2 | Class | Status |
1 | 0.26 | small | A | |
2 | 0.25 | small | A | |
3 | 0.29 | small | B | class noise |
4 | 1.02 | large | B | |
5 | 1.05 | large | B | |
6 | 0.30 | large | B | attribute noise |
No. | Attribute 1 | Attribute 2 | Class | Status |
1 | 0.26 | small | A | |
2 | 0.25 | small | A | |
3 | 0.29 | small | B | class noise |
4 | 1.02 | large | B | |
5 | 1.05 | large | B | |
6 | 0.30 | large | B | attribute noise |
Training set |
Test set |
Training set |
Test set |
(x, y) | (x, y) | (x, y) | (x, y) |
(2, 4) | (3, 5) | (4, 19) | (5, 20) |
(2, 6) | (3, 7) | (6, 19) | (7, 20) |
(2, 8) | (3, 9) | (8, 19) | (11, 20) |
(2, 10) | (3, 11) | (10, 19) | (13, 20) |
(2, 12) | (3, 13) | (12, 19) | (15, 20) |
(2, 14) | (5, 5) | (14, 19) | (17, 20) |
(4, 4) | (5, 7) | (16, 19) | (17, 18) |
(4, 8) | (5, 9) | (18, 19) | (17, 16) |
(4, 10) | (5, 11) | (16, 17) | (17, 14) |
(4, 14) | (5, 13) | (18, 17) | (17, 12) |
(6, 4) | (7, 5) | (16, 15) | (17, 10) |
(6, 6) | (7, 7) | (18, 15) | - |
(6, 8) | (7, 9) | (16, 13) | - |
(6, 10) | (7, 11) | (18, 13) | - |
(6, 12) | (7, 13) | (16, 11) | - |
(6, 14) | (9, 5) | (16, 9) | - |
(8, 4) | (9, 7) | (18, 9) | - |
(8, 6) | (9, 9) | (17, 8) | - |
(8, 8) | (9, 11) | (17, 6) | - |
(8, 10) | (9, 13) | (17, 4) | - |
(8, 12) | (11, 5) | (14, 20.5) | - |
(8, 14) | (16, 7) | (4, 6) | - |
(10, 4) | (18, 7) | (10, 6) | - |
(10, 8) | (16, 5) | (4, 12) | - |
(10, 10) | (16, 3) | (10, 12) | - |
(10, 14) | (11, 7) | (6, 21) | - |
(12, 4) | (11, 9) | (10, 21) | - |
(12, 6) | (11, 11) | (12, 21) | - |
(12, 8) | (11, 13) | (16, 21) | - |
(12, 10) | - | (18, 21) | - |
(12, 12) | - | - | - |
(12, 14) | - | - | - |
(8, 21) | - | - | - |
(14, 21) | - | - | - |
(18, 11) | - | - | - |
(18, 5) | - | - | - |
Training set |
Test set |
Training set |
Test set |
(x, y) | (x, y) | (x, y) | (x, y) |
(2, 4) | (3, 5) | (4, 19) | (5, 20) |
(2, 6) | (3, 7) | (6, 19) | (7, 20) |
(2, 8) | (3, 9) | (8, 19) | (11, 20) |
(2, 10) | (3, 11) | (10, 19) | (13, 20) |
(2, 12) | (3, 13) | (12, 19) | (15, 20) |
(2, 14) | (5, 5) | (14, 19) | (17, 20) |
(4, 4) | (5, 7) | (16, 19) | (17, 18) |
(4, 8) | (5, 9) | (18, 19) | (17, 16) |
(4, 10) | (5, 11) | (16, 17) | (17, 14) |
(4, 14) | (5, 13) | (18, 17) | (17, 12) |
(6, 4) | (7, 5) | (16, 15) | (17, 10) |
(6, 6) | (7, 7) | (18, 15) | - |
(6, 8) | (7, 9) | (16, 13) | - |
(6, 10) | (7, 11) | (18, 13) | - |
(6, 12) | (7, 13) | (16, 11) | - |
(6, 14) | (9, 5) | (16, 9) | - |
(8, 4) | (9, 7) | (18, 9) | - |
(8, 6) | (9, 9) | (17, 8) | - |
(8, 8) | (9, 11) | (17, 6) | - |
(8, 10) | (9, 13) | (17, 4) | - |
(8, 12) | (11, 5) | (14, 20.5) | - |
(8, 14) | (16, 7) | (4, 6) | - |
(10, 4) | (18, 7) | (10, 6) | - |
(10, 8) | (16, 5) | (4, 12) | - |
(10, 10) | (16, 3) | (10, 12) | - |
(10, 14) | (11, 7) | (6, 21) | - |
(12, 4) | (11, 9) | (10, 21) | - |
(12, 6) | (11, 11) | (12, 21) | - |
(12, 8) | (11, 13) | (16, 21) | - |
(12, 10) | - | (18, 21) | - |
(12, 12) | - | - | - |
(12, 14) | - | - | - |
(8, 21) | - | - | - |
(14, 21) | - | - | - |
(18, 11) | - | - | - |
(18, 5) | - | - | - |
Training set |
Test set |
Training set |
Test set |
(x, y) | (x, y) | (x, y) | (x, y) |
(14.5, -2) | (-0.5, 2) | (1, 6) | (20, -6) |
(0.5, 2) | (14.5, 2) | (-6, -6) | (-6, -1) |
(2, -0.5) | (13.5, -2) | (8, -1) | (-1, -6) |
(-2, 2) | - | (15, -6) | (8, 6) |
(16, -0.5) | - | (-6, 6) | (8, 1) |
(16, 0.5) | - | (8, -6) | (15, 6) |
(12, -2) | - | (6, 6) | (-6, 1) |
(0.5, -2) | - | (6, 1) | (1, -6) |
(12, 0.5) | - | (20, 1) | (6, 1) |
(16, -2) | - | (20, -1) | - |
(2, 2) | - | (20, 6) | - |
(2, 0.5) | - | (13, 6) | - |
(-2, -2) | - | (-1, 6) | - |
(12, 2) | - | (6, -6) | - |
(13.5, 2) | - | (13, -6) | - |
(-0.5, -2) | - | - | - |
(2, -0.5) | - | - | - |
(16, 2) | - | - | - |
(-2, 0.5) | - | - | - |
(-2, -0.5) | - | - | - |
(12, -0.5) | - | - | - |
Training set |
Test set |
Training set |
Test set |
(x, y) | (x, y) | (x, y) | (x, y) |
(14.5, -2) | (-0.5, 2) | (1, 6) | (20, -6) |
(0.5, 2) | (14.5, 2) | (-6, -6) | (-6, -1) |
(2, -0.5) | (13.5, -2) | (8, -1) | (-1, -6) |
(-2, 2) | - | (15, -6) | (8, 6) |
(16, -0.5) | - | (-6, 6) | (8, 1) |
(16, 0.5) | - | (8, -6) | (15, 6) |
(12, -2) | - | (6, 6) | (-6, 1) |
(0.5, -2) | - | (6, 1) | (1, -6) |
(12, 0.5) | - | (20, 1) | (6, 1) |
(16, -2) | - | (20, -1) | - |
(2, 2) | - | (20, 6) | - |
(2, 0.5) | - | (13, 6) | - |
(-2, -2) | - | (-1, 6) | - |
(12, 2) | - | (6, -6) | - |
(13.5, 2) | - | (13, -6) | - |
(-0.5, -2) | - | - | - |
(2, -0.5) | - | - | - |
(16, 2) | - | - | - |
(-2, 0.5) | - | - | - |
(-2, -0.5) | - | - | - |
(12, -0.5) | - | - | - |
Training set |
Test set |
Training set |
Test set |
(x, y) | (x, y) | (x, y) | (x, y) |
(16, 0.5) | (12, -2) | (-6, -6) | (6, 6) |
(-0.5, -2) | (0.5, -2) | (8, -1) | (6, 1) |
(16, 2) | (12, 0.5) | (15, -6) | (20, 1) |
(-2, 0.5) | (16, -2) | (-6, 6) | (20, -1) |
(12, -0.5) | (2, 2) | (6, -6) | (20, 6) |
(1, 6) | (2, 0.5) | (-6, -1) | (13, 6) |
(8, -6) | - | (8, 6) | - |
(-1, 6) | - | (8, 1) | - |
(13, -6) | - | (15, 6) | - |
(20, -6) | - | (6, -1) | - |
(-1, -6) | - | (14.5, -2) | - |
(-6, 1) | - | (0.5, 2) | - |
(1, -6) | - | (2, -2) | - |
- | - | (-2, 2) | - |
- | - | (16, -0, 5) | - |
- | - | (-2, -2) | - |
- | - | (12, 2) | - |
- | - | (13.5, 2) | - |
- | - | (2, -0.5) | - |
- | - | (-2, -0.5) | - |
- | - | (-0.5, 2) | - |
- | - | (14.5, 2) | - |
- | - | (13.5, -2) | - |
Training set |
Test set |
Training set |
Test set |
(x, y) | (x, y) | (x, y) | (x, y) |
(16, 0.5) | (12, -2) | (-6, -6) | (6, 6) |
(-0.5, -2) | (0.5, -2) | (8, -1) | (6, 1) |
(16, 2) | (12, 0.5) | (15, -6) | (20, 1) |
(-2, 0.5) | (16, -2) | (-6, 6) | (20, -1) |
(12, -0.5) | (2, 2) | (6, -6) | (20, 6) |
(1, 6) | (2, 0.5) | (-6, -1) | (13, 6) |
(8, -6) | - | (8, 6) | - |
(-1, 6) | - | (8, 1) | - |
(13, -6) | - | (15, 6) | - |
(20, -6) | - | (6, -1) | - |
(-1, -6) | - | (14.5, -2) | - |
(-6, 1) | - | (0.5, 2) | - |
(1, -6) | - | (2, -2) | - |
- | - | (-2, 2) | - |
- | - | (16, -0, 5) | - |
- | - | (-2, -2) | - |
- | - | (12, 2) | - |
- | - | (13.5, 2) | - |
- | - | (2, -0.5) | - |
- | - | (-2, -0.5) | - |
- | - | (-0.5, 2) | - |
- | - | (14.5, 2) | - |
- | - | (13.5, -2) | - |
P-PCF Algorithm | M-PCF Algorithm | |||
Training | Test | Training | Test | |
Original Data | 88.89 | 85.41 | 100 | 83.33 |
Noisy Data | 61.80 | 56.25 | 100 | 52.08 |
P-PCF Algorithm | M-PCF Algorithm | |||
Training | Test | Training | Test | |
Original Data | 88.89 | 85.41 | 100 | 83.33 |
Noisy Data | 61.80 | 56.25 | 100 | 52.08 |
Dataset | Short Name | ||||
Wisconsin Breast Cancer | Wis | 683 | 444 | 239 | 10 |
German-Credit | Ger | 1000 | 700 | 300 | 21 |
Haberman | Hab | 306 | 225 | 81 | 4 |
Hearth-statlog | Hea | 270 | 137 | 160 | 14 |
Ionosphere | Ion | 351 | 126 | 225 | 35 |
Liver-disorders | Liv | 345 | 145 | 200 | 7 |
Sonar | Son | 208 | 111 | 107 | 61 |
Australian credit | Aus | 690 | 383 | 307 | 14 |
Monk | Monk | 432 | 228 | 204 | 6 |
Dataset | Short Name | ||||
Wisconsin Breast Cancer | Wis | 683 | 444 | 239 | 10 |
German-Credit | Ger | 1000 | 700 | 300 | 21 |
Haberman | Hab | 306 | 225 | 81 | 4 |
Hearth-statlog | Hea | 270 | 137 | 160 | 14 |
Ionosphere | Ion | 351 | 126 | 225 | 35 |
Liver-disorders | Liv | 345 | 145 | 200 | 7 |
Sonar | Son | 208 | 111 | 107 | 61 |
Australian credit | Aus | 690 | 383 | 307 | 14 |
Monk | Monk | 432 | 228 | 204 | 6 |
M-PCF Algorithm | P-PCF Algorithm | |||
Training | Test | Training | Test | |
Wis | 100 | 98.50 | 98.59 | 96.13 |
Ger | 100 | 72.41 | 82.56 | 73.80 |
Hab | 100 | 74.27 | 86.97 | 74.25 |
Hea | 100 | 84.41 | 93.67 | 84.76 |
Ion | 100 | 88.42 | 94.87 | 88.96 |
Liv | 100 | 68.87 | 78.43 | 69.40 |
Son | 100 | 70.24 | 80.47 | 71.09 |
Aus | 100 | 85.42 | 87.2 | 86.23 |
Monk | 100 | 99.82 | 100 | 99.02 |
M-PCF Algorithm | P-PCF Algorithm | |||
Training | Test | Training | Test | |
Wis | 100 | 98.50 | 98.59 | 96.13 |
Ger | 100 | 72.41 | 82.56 | 73.80 |
Hab | 100 | 74.27 | 86.97 | 74.25 |
Hea | 100 | 84.41 | 93.67 | 84.76 |
Ion | 100 | 88.42 | 94.87 | 88.96 |
Liv | 100 | 68.87 | 78.43 | 69.40 |
Son | 100 | 70.24 | 80.47 | 71.09 |
Aus | 100 | 85.42 | 87.2 | 86.23 |
Monk | 100 | 99.82 | 100 | 99.02 |
Datasets | M-PCF | P-PCF | SVM | 1-NN | 3-NN | C 4.5 |
Wis | 98.50 | 96.13 | 95.91 | 91.21 | 95.61 | 92.39 |
Ger | 72.41 | 73.80 | 70.35 | 68.50 | 67.70 | 74.5 |
Hab | 74.27 | 74.25 | 73.82 | 68.48 | 68.28 | 69.42 |
Hea | 84.41 | 84.76 | 78.88 | 69.99 | 68.47 | 70.73 |
Ion | 88.42 | 88.96 | 90.48 | 90.22 | 89.98 | 89.87 |
Liv | 68.87 | 69.40 | 61.12 | 59.17 | 58.87 | 58.96 |
Son | 70.24 | 71.09 | 78.21 | 89.75 | 82.52 | 71.18 |
Aus | 85.42 | 86.23 | 85.51 | 80.73 | 85.8 | 84.35 |
Monk2 | 99.82 | 92.02 | 80.56 | 75.69 | 97.92 | 99.5 |
Datasets | M-PCF | P-PCF | SVM | 1-NN | 3-NN | C 4.5 |
Wis | 98.50 | 96.13 | 95.91 | 91.21 | 95.61 | 92.39 |
Ger | 72.41 | 73.80 | 70.35 | 68.50 | 67.70 | 74.5 |
Hab | 74.27 | 74.25 | 73.82 | 68.48 | 68.28 | 69.42 |
Hea | 84.41 | 84.76 | 78.88 | 69.99 | 68.47 | 70.73 |
Ion | 88.42 | 88.96 | 90.48 | 90.22 | 89.98 | 89.87 |
Liv | 68.87 | 69.40 | 61.12 | 59.17 | 58.87 | 58.96 |
Son | 70.24 | 71.09 | 78.21 | 89.75 | 82.52 | 71.18 |
Aus | 85.42 | 86.23 | 85.51 | 80.73 | 85.8 | 84.35 |
Monk2 | 99.82 | 92.02 | 80.56 | 75.69 | 97.92 | 99.5 |
Datasets | M-PCF | P-PCF | SVM | 1NN | 3NN | C 4.5 |
Wis | 86.84 | 96.14 | 96.34 | 89.16 | 94.29 | 92.80 |
Ger | 70.8 | 72.40 | 73.37 | 68.44 | 65.98 | 63.01 |
Hab | 63.9 | 74.44 | 72.17 | 67.29 | 66.25 | 68.47 |
Hea | 68.89 | 78.44 | 77.84 | 62.58 | 67.03 | 69.99 |
Ion | 67.85 | 85.84 | 89.18 | 88.02 | 89.10 | 88.28 |
Liv | 61.46 | 67.76 | 55.29 | 59.52 | 53.85 | 59.45 |
Son | 67.14 | 70.52 | 74.37 | 86.53 | 83.31 | 68.64 |
Aus | 78.21 | 85.37 | 81.74 | 72.75 | 80.15 | 81.16 |
Monk | 88.42 | 98.21 | 77.55 | 73.84 | 90.05 | 95.14 |
Datasets | M-PCF | P-PCF | SVM | 1NN | 3NN | C 4.5 |
Wis | 86.84 | 96.14 | 96.34 | 89.16 | 94.29 | 92.80 |
Ger | 70.8 | 72.40 | 73.37 | 68.44 | 65.98 | 63.01 |
Hab | 63.9 | 74.44 | 72.17 | 67.29 | 66.25 | 68.47 |
Hea | 68.89 | 78.44 | 77.84 | 62.58 | 67.03 | 69.99 |
Ion | 67.85 | 85.84 | 89.18 | 88.02 | 89.10 | 88.28 |
Liv | 61.46 | 67.76 | 55.29 | 59.52 | 53.85 | 59.45 |
Son | 67.14 | 70.52 | 74.37 | 86.53 | 83.31 | 68.64 |
Aus | 78.21 | 85.37 | 81.74 | 72.75 | 80.15 | 81.16 |
Monk | 88.42 | 98.21 | 77.55 | 73.84 | 90.05 | 95.14 |
Datasets | M-PCF | P-PCF | SVM | 1NN | 3NN | C 4.5 |
Wis | 84.27 | 95.85 | 96.05 | 86.52 | 91.95 | 93.26 |
Ger | 68.4 | 73.8 | 70.64 | 65.28 | 64.97 | 60.24 |
Hab | 60.54 | 75.65 | 70.28 | 64.23 | 65.42 | 67.93 |
Hea | 68.52 | 79.26 | 76.03 | 58.14 | 62.95 | 65.18 |
Ion | 65.45 | 83.17 | 81.57 | 86.25 | 88.47 | 85.23 |
Liv | 60.29 | 67.49 | 55.50 | 54.07 | 59.20 | 51.36 |
Son | 62.64 | 68.56 | 73.97 | 81.18 | 81.11 | 52.36 |
Aus | 72.01 | 83.48 | 77.54 | 69.42 | 74.93 | 74.89 |
Monk | 78.56 | 96.98 | 74.77 | 69.91 | 81.48 | 89.35 |
Datasets | M-PCF | P-PCF | SVM | 1NN | 3NN | C 4.5 |
Wis | 84.27 | 95.85 | 96.05 | 86.52 | 91.95 | 93.26 |
Ger | 68.4 | 73.8 | 70.64 | 65.28 | 64.97 | 60.24 |
Hab | 60.54 | 75.65 | 70.28 | 64.23 | 65.42 | 67.93 |
Hea | 68.52 | 79.26 | 76.03 | 58.14 | 62.95 | 65.18 |
Ion | 65.45 | 83.17 | 81.57 | 86.25 | 88.47 | 85.23 |
Liv | 60.29 | 67.49 | 55.50 | 54.07 | 59.20 | 51.36 |
Son | 62.64 | 68.56 | 73.97 | 81.18 | 81.11 | 52.36 |
Aus | 72.01 | 83.48 | 77.54 | 69.42 | 74.93 | 74.89 |
Monk | 78.56 | 96.98 | 74.77 | 69.91 | 81.48 | 89.35 |
Datasets | M-PCF | P-PCF | SVM | 1NN | 3NN | C 4.5 |
Wis | 79.56 | 95.43 | 95.32 | 81.24 | 84.91 | 90.19 |
Ger | 65.8 | 71.56 | 65.14 | 60.48 | 62.11 | 61.40 |
Hab | 54.28 | 74.54 | 67.25 | 63.28 | 62.47 | 65.37 |
Hea | 67.04 | 74.82 | 69.46 | 56.91 | 58.14 | 60.60 |
Ion | 62.03 | 80.34 | 81.43 | 82.27 | 86.07 | 79.45 |
Liv | 59.72 | 66.70 | 54.28 | 55.01 | 58.76 | 51.69 |
Son | 59.64 | 65.98 | 70.84 | 73.91 | 78.21 | 63.9 |
Aus | 64.34 | 82.03 | 70.73 | 63.04 | 65.36 | 68.41 |
Monk | 71.78 | 92.34 | 66.9 | 62.73 | 70.83 | 77.55 |
Datasets | M-PCF | P-PCF | SVM | 1NN | 3NN | C 4.5 |
Wis | 79.56 | 95.43 | 95.32 | 81.24 | 84.91 | 90.19 |
Ger | 65.8 | 71.56 | 65.14 | 60.48 | 62.11 | 61.40 |
Hab | 54.28 | 74.54 | 67.25 | 63.28 | 62.47 | 65.37 |
Hea | 67.04 | 74.82 | 69.46 | 56.91 | 58.14 | 60.60 |
Ion | 62.03 | 80.34 | 81.43 | 82.27 | 86.07 | 79.45 |
Liv | 59.72 | 66.70 | 54.28 | 55.01 | 58.76 | 51.69 |
Son | 59.64 | 65.98 | 70.84 | 73.91 | 78.21 | 63.9 |
Aus | 64.34 | 82.03 | 70.73 | 63.04 | 65.36 | 68.41 |
Monk | 71.78 | 92.34 | 66.9 | 62.73 | 70.83 | 77.55 |
Datasets | M-PCF | P-PCF | SVM | 1NN | 3NN | C 4.5 |
Wis | 69.95 | 92.85 | 92.74 | 75.41 | 77.31 | 87.56 |
Ger | 62.4 | 69.21 | 63.78 | 57.62 | 56.70 | 53.17 |
Hab | 51.83 | 68.66 | 62.87 | 61.82 | 60.44 | 63.53 |
Hea | 60.37 | 68.15 | 65.28 | 51.47 | 53.69 | 46.60 |
Ion | 61.48 | 80.71 | 76.98 | 78.51 | 84.27 | 77.81 |
Liv | 56.58 | 63.37 | 54.12 | 48.66 | 55.40 | 43.45 |
Son | 52.64 | 60.01 | 68.64 | 65.23 | 72.80 | 65.75 |
Aus | 52.78 | 73.77 | 62.46 | 55.65 | 55.8 | 58.84 |
Monk | 51.47 | 90.61 | 60.19 | 53.7 | 60.42 | 66.44 |
Datasets | M-PCF | P-PCF | SVM | 1NN | 3NN | C 4.5 |
Wis | 69.95 | 92.85 | 92.74 | 75.41 | 77.31 | 87.56 |
Ger | 62.4 | 69.21 | 63.78 | 57.62 | 56.70 | 53.17 |
Hab | 51.83 | 68.66 | 62.87 | 61.82 | 60.44 | 63.53 |
Hea | 60.37 | 68.15 | 65.28 | 51.47 | 53.69 | 46.60 |
Ion | 61.48 | 80.71 | 76.98 | 78.51 | 84.27 | 77.81 |
Liv | 56.58 | 63.37 | 54.12 | 48.66 | 55.40 | 43.45 |
Son | 52.64 | 60.01 | 68.64 | 65.23 | 72.80 | 65.75 |
Aus | 52.78 | 73.77 | 62.46 | 55.65 | 55.8 | 58.84 |
Monk | 51.47 | 90.61 | 60.19 | 53.7 | 60.42 | 66.44 |
[1] |
Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098 |
[2] |
Akbar Mahmoodi Rishakani, Seyed Mojtaba Dehnavi, Mohmmadreza Mirzaee Shamsabad, Nasour Bagheri. Cryptographic properties of cyclic binary matrices. Advances in Mathematics of Communications, 2021, 15 (2) : 311-327. doi: 10.3934/amc.2020068 |
[3] |
Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090 |
[4] |
Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350 |
[5] |
Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141 |
[6] |
Yuyuan Ouyang, Trevor Squires. Some worst-case datasets of deterministic first-order methods for solving binary logistic regression. Inverse Problems & Imaging, 2021, 15 (1) : 63-77. doi: 10.3934/ipi.2020047 |
[7] |
Bimal Mandal, Aditi Kar Gangopadhyay. A note on generalization of bent boolean functions. Advances in Mathematics of Communications, 2021, 15 (2) : 329-346. doi: 10.3934/amc.2020069 |
[8] |
Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314 |
[9] |
Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050 |
[10] |
Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026 |
[11] |
Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286 |
[12] |
Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365 |
[13] |
Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020169 |
[14] |
Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020 doi: 10.3934/jcd.2021006 |
[15] |
Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020378 |
[16] |
Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115 |
[17] |
Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005 |
[18] |
Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020176 |
[19] |
Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381 |
[20] |
Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020117 |
2019 Impact Factor: 1.366
Tools
Article outline
Figures and Tables
[Back to Top]