-
Previous Article
Perturbation of Image and conjugate duality for vector optimization
- JIMO Home
- This Issue
-
Next Article
Optimal ordering and pricing models of a two-echelon supply chain under multipletimes ordering
Continuity, differentiability and semismoothness of generalized tensor functions
School of Mathematics, Tianjin University, Tianjin 300350, China |
A large number of real-world problems can be transformed into mathematical problems by means of third-order real tensors. Recently, as an extension of the generalized matrix function, the generalized tensor function over the third-order real tensor space was introduced with the aid of a scalar function based on the T-product for third-order tensors and the tensor singular value decomposition; and some useful algebraic properties of the function were investigated. In this paper, we show that the generalized tensor function can inherit a lot of good properties from the associated scalar function, including continuity, directional differentiability, Fréchet differentiability, Lipschitz continuity and semismoothness. These properties provide an important theoretical basis for the studies of various mathematical problems with generalized tensor functions, and particularly, for the studies of tensor optimization problems with generalized tensor functions.
References:
[1] |
B. P. W. Ames and H. S. Sendov,
Derivatives of compound matrix valued functions, Journal of Mathematical Analysis and Applications, 433 (2016), 1459-1485.
doi: 10.1016/j.jmaa.2015.08.029. |
[2] |
F. Andersson, M. Carlsson and K. M. Perfekt,
Operator-Lipschitz estimates for the singular value functional calculus, Proceedings of the American Mathematical Society, 144 (2016), 1867-1875.
doi: 10.1090/proc/12843. |
[3] |
F. Arrigo, M. Benzi and C. Fenu,
Computation of generalized matrix functions, SIAM Journal on Matrix Analysis and Applications, 37 (2016), 836-860.
doi: 10.1137/15M1049634. |
[4] |
J. L. Aurentz, A. P. Austin, M. Benzi and V. Kalantzis,
Stable computation of generalized matrix functions via polynomial interpolation, SIAM Journal on Matrix Analysis and Applications, 40 (2019), 210-234.
doi: 10.1137/18M1191786. |
[5] |
M. Benzi and R. Huang,
Some matrix properties preserved by generalized matrix functions, Special Matrices, 7 (2019), 27-37.
doi: 10.1515/spma-2019-0003. |
[6] |
R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0653-8. |
[7] |
K. Braman,
Third-order tensors as linear operators on a space of matrices, Linear Algebra and its Applications, 433 (2010), 1241-1253.
doi: 10.1016/j.laa.2010.05.025. |
[8] |
R. H. F. Chan and X. Q. Jin, An Introduction to Iterative Toeplitz Solvers, SIAM, Philadelphia, PA, 2007.
doi: 10.1137/1.9780898718850. |
[9] |
X. Chen, H. Qi and P. Tseng,
Analysis of nonsmooth symmetric-matrix-valued functions with applications to semidefinite complementarity problems, SIAM Journal on Optimization, 13 (2003), 960-985.
doi: 10.1137/S1052623400380584. |
[10] |
X. Chen and P. Tseng,
Non-interior continuation methods for solving semidefinite complementarity problems, Mathematical Programming, 95 (2003), 431-474.
doi: 10.1007/s10107-002-0306-1. |
[11] |
F. H. Clarke, Optimization and Nonsmooth Analysis, Second edition, SIAM, Philadelphia, PA, 1990.
doi: 10.1137/1.9781611971309. |
[12] |
S. Gandy, B. Recht and I. Yamada, Tensor completion and low-n-rank tensor recovery via convex optimization, Inverse Problems, 27 (2011), 025010, 19 pp.
doi: 10.1088/0266-5611/27/2/025010. |
[13] |
D. Goldfarb and Z. Qin,
Robust low-rank tensor recovery: Models and algorithms, SIAM Journal on Matrix Analysis and Applications, 35 (2014), 225-253.
doi: 10.1137/130905010. |
[14] |
G. H. Golub and C. F. Van Loan, Matrix Computations, 4th edition, Johns Hopkins University Press, Baltimore, MD, 2013. |
[15] |
N. Hao, M. E. Kilmer, K. Braman and R. C. Hoover,
Facial recognition using tensor-tensor decompositions, SIAM Journal on Imaging Sciences, 6 (2013), 437-463.
doi: 10.1137/110842570. |
[16] |
J. B. Hawkins and A. Ben-Israel,
On generalized matrix functions, Linear and Multilinear Algebra, 1 (1973), 163-171.
doi: 10.1080/03081087308817015. |
[17] |
N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, PA, 2008.
doi: 10.1137/1.9780898717778. |
[18] |
A. Hjorungnes and D. Gesbert,
Complex-valued matrix differentiation: Techniques and key results, IEEE Transactions on Signal Processing, 55 (2007), 2740-2746.
doi: 10.1109/TSP.2007.893762. |
[19] |
Z. H. Huang and L. Qi,
Formulating an n-person noncooperative game as a tensor complementarity problem, Computational Optimization and Applications, 66 (2017), 557-576.
doi: 10.1007/s10589-016-9872-7. |
[20] |
M. E. Kilmer, K. Braman, N. Hao and R. C. Hoover,
Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging, SIAM Journal on Matrix Analysis and Applications, 34 (2013), 148-172.
doi: 10.1137/110837711. |
[21] |
M. E. Kilmer and C. D. Martin,
Factorization strategies for third-order tensors, Linear Algebra and its Applications, 435 (2011), 641-658.
doi: 10.1016/j.laa.2010.09.020. |
[22] |
J. Liu, P. Musialski, P. Wonka and J. Ye,
Tensor completion for estimating missing values in visual data, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (2013), 208-220.
doi: 10.1109/TPAMI.2012.39. |
[23] |
C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin and S. Yan, Tensor robust principal component analysis: Exact recovery of corrupted low-rank tensors via convex optimization, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2016), 5249–5257.
doi: 10.1109/CVPR.2016.567. |
[24] |
C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin and S. Yan, Tensor robust principal component analysis with a new tensor nuclear norm, IEEE Transactions on Pattern Analysis and Machine Intelligence, 42 (2020), 925-938. Google Scholar |
[25] |
K. Lund, The tensor t-function: a definition for functions of third-order tensors, Numerical Linear Algebra with Applications, 27 (2020), e2288.
doi: 10.1002/nla.2288. |
[26] |
C. D. Martin, R. Shafer and B. LaRue, An order-p tensor factorization with applications in imaging, SIAM Journal on Scientific Computing, 35 (2013), A474–A490.
doi: 10.1137/110841229. |
[27] |
Y. Miao, L. Qi and Y. Wei,
Generalized tensor function via the tensor singular value decomposition based on the T-product, Linear Algebra and its Applications, 590 (2020), 258-303.
doi: 10.1016/j.laa.2019.12.035. |
[28] |
Y. Miao, L. Qi and Y. Wei, T-Jordan canonical form and T-Drazin inverse based on the T-product, Communications on Applied Mathematics and Computation, (2020).
doi: 10.1007/s42967-019-00055-4. |
[29] |
E. Newman, L. Horesh, H. Avron and M. E. Kilmer, Stable tensor neural networks for rapid deep learning, preprint, arXiv: 1811.06569 Google Scholar |
[30] |
V. Noferini,
A formula for the Fréchet derivative of a generalized matrix function, SIAM Journal on Matrix Analysis and Applications, 38 (2017), 434-457.
doi: 10.1137/16M1072851. |
[31] |
R. F. Rinehart,
The equivalence of definitions of a matric function, American Mathematical Monthly, 62 (1955), 395-414.
doi: 10.1080/00029890.1955.11988651. |
[32] |
R. T. Rockafellar and R. J. B. Wets, Variational Analysis, Springer, Heidelberg, 2009.
doi: 10.1007/978-3-642-02431-3. |
[33] |
N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis and C. Faloutsos,
Tensor decomposition for signal processing and machine learning, IEEE Transactions on Signal Processing, 65 (2017), 3551-3582.
doi: 10.1109/TSP.2017.2690524. |
[34] |
G. W. Stewart and J. Sun, Matrix Perturbation Theory, Academic Press, Boston, MA, 1990.
![]() |
[35] |
D. Sun and J. Sun,
Semismooth matrix-valued functions, Mathematics of Operations Research, 27 (2002), 150-169.
doi: 10.1287/moor.27.1.150.342. |
[36] |
Y. Xie, D. Tao, W. Zhang, Y. Liu, L. Zhang and Y. Qu,
On unifying multi-view self-representations for clustering by tensor multi-rank minimization, International Journal of Computer Vision, 126 (2018), 1157-1179.
doi: 10.1007/s11263-018-1086-2. |
[37] |
Y. Xu, Z. Wu, J. Chanussot and Z. Wei,
Joint reconstruction and anomaly detection from compressive hyperspectral images using Mahalanobis distance-regularized tensor RPCA, IEEE Transactions on Geoscience and Remote Sensing, 56 (2018), 2919-2930.
doi: 10.1109/TGRS.2017.2786718. |
[38] |
Y. Xu, L. Yu, H. Xu, H. Zhang and T. Nguyen,
Vector sparse representation of color image using quaternion matrix analysis, IEEE Transactions on Image Processing, 24 (2015), 1315-1329.
doi: 10.1109/TIP.2015.2397314. |
[39] |
L. Yang, Z. H. Huang, S. Hu and J. Han,
An iterative algorithm for third-order tensor multi-rank minimization, Computational Optimization and Applications, 63 (2016), 169-202.
doi: 10.1007/s10589-015-9769-x. |
[40] |
L. Yang, Z. H. Huang and Y. F. Li, A splitting augmented Lagrangian method for low multilinear-rank tensor recovery, Asia-Pacific Journal of Operational Research, 32 (2015), 1540008.
doi: 10.1142/S0217595915400084. |
[41] |
L. Yang, Z. H. Huang and X. Shi,
A fixed point iterative method for low n-rank tensor pursuit, IEEE Transactions on Signal Processing, 61 (2013), 2952-2962.
doi: 10.1109/TSP.2013.2254477. |
[42] |
Z. Yang, A Study on Nonsymmetric Matrix-valued Functions, Master's thesis, Department of Mathematics, National University of Singapore, 2009. Google Scholar |
[43] |
M. Yin, J. Gao, S. Xie and Y. Guo,
Multiview subspace clustering via tensorial t-product representation, IEEE Transactions on Neural Networks and Learning Systems, 30 (2019), 851-864.
doi: 10.1109/TNNLS.2018.2851444. |
[44] |
M. Yuan and C. H. Zhang,
On tensor completion via nuclear norm minimization, Foundations of Computational Mathematics, 16 (2016), 1031-1068.
doi: 10.1007/s10208-015-9269-5. |
[45] |
M. Zhang, L. Yang and Z. H. Huang,
Minimum n-rank approximation via iterative hard thresholding, Applied Mathematics and Computation, 256 (2015), 860-875.
doi: 10.1016/j.amc.2015.01.099. |
[46] |
Z. Zhang and S. Aeron,
Exact tensor completion using t-SVD, IEEE Transactions on Signal Processing, 65 (2017), 1511-1526.
doi: 10.1109/TSP.2016.2639466. |
[47] |
Z. Zhang, G. Ely, S. Aeron, N. Hao and M. E. Kilmer, Novel methods for multilinear data completion and de-noising based on tensor-SVD, Preceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2014), 3842–3849.
doi: 10.1109/CVPR.2014.485. |
[48] |
P. Zhou, C. Lu, Z. Lin and C. Zhang,
Tensor factorization for low-rank tensor completion, IEEE Transactions on Image Processing, 27 (2018), 1152-1163.
doi: 10.1109/TIP.2017.2762595. |
show all references
References:
[1] |
B. P. W. Ames and H. S. Sendov,
Derivatives of compound matrix valued functions, Journal of Mathematical Analysis and Applications, 433 (2016), 1459-1485.
doi: 10.1016/j.jmaa.2015.08.029. |
[2] |
F. Andersson, M. Carlsson and K. M. Perfekt,
Operator-Lipschitz estimates for the singular value functional calculus, Proceedings of the American Mathematical Society, 144 (2016), 1867-1875.
doi: 10.1090/proc/12843. |
[3] |
F. Arrigo, M. Benzi and C. Fenu,
Computation of generalized matrix functions, SIAM Journal on Matrix Analysis and Applications, 37 (2016), 836-860.
doi: 10.1137/15M1049634. |
[4] |
J. L. Aurentz, A. P. Austin, M. Benzi and V. Kalantzis,
Stable computation of generalized matrix functions via polynomial interpolation, SIAM Journal on Matrix Analysis and Applications, 40 (2019), 210-234.
doi: 10.1137/18M1191786. |
[5] |
M. Benzi and R. Huang,
Some matrix properties preserved by generalized matrix functions, Special Matrices, 7 (2019), 27-37.
doi: 10.1515/spma-2019-0003. |
[6] |
R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0653-8. |
[7] |
K. Braman,
Third-order tensors as linear operators on a space of matrices, Linear Algebra and its Applications, 433 (2010), 1241-1253.
doi: 10.1016/j.laa.2010.05.025. |
[8] |
R. H. F. Chan and X. Q. Jin, An Introduction to Iterative Toeplitz Solvers, SIAM, Philadelphia, PA, 2007.
doi: 10.1137/1.9780898718850. |
[9] |
X. Chen, H. Qi and P. Tseng,
Analysis of nonsmooth symmetric-matrix-valued functions with applications to semidefinite complementarity problems, SIAM Journal on Optimization, 13 (2003), 960-985.
doi: 10.1137/S1052623400380584. |
[10] |
X. Chen and P. Tseng,
Non-interior continuation methods for solving semidefinite complementarity problems, Mathematical Programming, 95 (2003), 431-474.
doi: 10.1007/s10107-002-0306-1. |
[11] |
F. H. Clarke, Optimization and Nonsmooth Analysis, Second edition, SIAM, Philadelphia, PA, 1990.
doi: 10.1137/1.9781611971309. |
[12] |
S. Gandy, B. Recht and I. Yamada, Tensor completion and low-n-rank tensor recovery via convex optimization, Inverse Problems, 27 (2011), 025010, 19 pp.
doi: 10.1088/0266-5611/27/2/025010. |
[13] |
D. Goldfarb and Z. Qin,
Robust low-rank tensor recovery: Models and algorithms, SIAM Journal on Matrix Analysis and Applications, 35 (2014), 225-253.
doi: 10.1137/130905010. |
[14] |
G. H. Golub and C. F. Van Loan, Matrix Computations, 4th edition, Johns Hopkins University Press, Baltimore, MD, 2013. |
[15] |
N. Hao, M. E. Kilmer, K. Braman and R. C. Hoover,
Facial recognition using tensor-tensor decompositions, SIAM Journal on Imaging Sciences, 6 (2013), 437-463.
doi: 10.1137/110842570. |
[16] |
J. B. Hawkins and A. Ben-Israel,
On generalized matrix functions, Linear and Multilinear Algebra, 1 (1973), 163-171.
doi: 10.1080/03081087308817015. |
[17] |
N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, PA, 2008.
doi: 10.1137/1.9780898717778. |
[18] |
A. Hjorungnes and D. Gesbert,
Complex-valued matrix differentiation: Techniques and key results, IEEE Transactions on Signal Processing, 55 (2007), 2740-2746.
doi: 10.1109/TSP.2007.893762. |
[19] |
Z. H. Huang and L. Qi,
Formulating an n-person noncooperative game as a tensor complementarity problem, Computational Optimization and Applications, 66 (2017), 557-576.
doi: 10.1007/s10589-016-9872-7. |
[20] |
M. E. Kilmer, K. Braman, N. Hao and R. C. Hoover,
Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging, SIAM Journal on Matrix Analysis and Applications, 34 (2013), 148-172.
doi: 10.1137/110837711. |
[21] |
M. E. Kilmer and C. D. Martin,
Factorization strategies for third-order tensors, Linear Algebra and its Applications, 435 (2011), 641-658.
doi: 10.1016/j.laa.2010.09.020. |
[22] |
J. Liu, P. Musialski, P. Wonka and J. Ye,
Tensor completion for estimating missing values in visual data, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (2013), 208-220.
doi: 10.1109/TPAMI.2012.39. |
[23] |
C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin and S. Yan, Tensor robust principal component analysis: Exact recovery of corrupted low-rank tensors via convex optimization, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2016), 5249–5257.
doi: 10.1109/CVPR.2016.567. |
[24] |
C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin and S. Yan, Tensor robust principal component analysis with a new tensor nuclear norm, IEEE Transactions on Pattern Analysis and Machine Intelligence, 42 (2020), 925-938. Google Scholar |
[25] |
K. Lund, The tensor t-function: a definition for functions of third-order tensors, Numerical Linear Algebra with Applications, 27 (2020), e2288.
doi: 10.1002/nla.2288. |
[26] |
C. D. Martin, R. Shafer and B. LaRue, An order-p tensor factorization with applications in imaging, SIAM Journal on Scientific Computing, 35 (2013), A474–A490.
doi: 10.1137/110841229. |
[27] |
Y. Miao, L. Qi and Y. Wei,
Generalized tensor function via the tensor singular value decomposition based on the T-product, Linear Algebra and its Applications, 590 (2020), 258-303.
doi: 10.1016/j.laa.2019.12.035. |
[28] |
Y. Miao, L. Qi and Y. Wei, T-Jordan canonical form and T-Drazin inverse based on the T-product, Communications on Applied Mathematics and Computation, (2020).
doi: 10.1007/s42967-019-00055-4. |
[29] |
E. Newman, L. Horesh, H. Avron and M. E. Kilmer, Stable tensor neural networks for rapid deep learning, preprint, arXiv: 1811.06569 Google Scholar |
[30] |
V. Noferini,
A formula for the Fréchet derivative of a generalized matrix function, SIAM Journal on Matrix Analysis and Applications, 38 (2017), 434-457.
doi: 10.1137/16M1072851. |
[31] |
R. F. Rinehart,
The equivalence of definitions of a matric function, American Mathematical Monthly, 62 (1955), 395-414.
doi: 10.1080/00029890.1955.11988651. |
[32] |
R. T. Rockafellar and R. J. B. Wets, Variational Analysis, Springer, Heidelberg, 2009.
doi: 10.1007/978-3-642-02431-3. |
[33] |
N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis and C. Faloutsos,
Tensor decomposition for signal processing and machine learning, IEEE Transactions on Signal Processing, 65 (2017), 3551-3582.
doi: 10.1109/TSP.2017.2690524. |
[34] |
G. W. Stewart and J. Sun, Matrix Perturbation Theory, Academic Press, Boston, MA, 1990.
![]() |
[35] |
D. Sun and J. Sun,
Semismooth matrix-valued functions, Mathematics of Operations Research, 27 (2002), 150-169.
doi: 10.1287/moor.27.1.150.342. |
[36] |
Y. Xie, D. Tao, W. Zhang, Y. Liu, L. Zhang and Y. Qu,
On unifying multi-view self-representations for clustering by tensor multi-rank minimization, International Journal of Computer Vision, 126 (2018), 1157-1179.
doi: 10.1007/s11263-018-1086-2. |
[37] |
Y. Xu, Z. Wu, J. Chanussot and Z. Wei,
Joint reconstruction and anomaly detection from compressive hyperspectral images using Mahalanobis distance-regularized tensor RPCA, IEEE Transactions on Geoscience and Remote Sensing, 56 (2018), 2919-2930.
doi: 10.1109/TGRS.2017.2786718. |
[38] |
Y. Xu, L. Yu, H. Xu, H. Zhang and T. Nguyen,
Vector sparse representation of color image using quaternion matrix analysis, IEEE Transactions on Image Processing, 24 (2015), 1315-1329.
doi: 10.1109/TIP.2015.2397314. |
[39] |
L. Yang, Z. H. Huang, S. Hu and J. Han,
An iterative algorithm for third-order tensor multi-rank minimization, Computational Optimization and Applications, 63 (2016), 169-202.
doi: 10.1007/s10589-015-9769-x. |
[40] |
L. Yang, Z. H. Huang and Y. F. Li, A splitting augmented Lagrangian method for low multilinear-rank tensor recovery, Asia-Pacific Journal of Operational Research, 32 (2015), 1540008.
doi: 10.1142/S0217595915400084. |
[41] |
L. Yang, Z. H. Huang and X. Shi,
A fixed point iterative method for low n-rank tensor pursuit, IEEE Transactions on Signal Processing, 61 (2013), 2952-2962.
doi: 10.1109/TSP.2013.2254477. |
[42] |
Z. Yang, A Study on Nonsymmetric Matrix-valued Functions, Master's thesis, Department of Mathematics, National University of Singapore, 2009. Google Scholar |
[43] |
M. Yin, J. Gao, S. Xie and Y. Guo,
Multiview subspace clustering via tensorial t-product representation, IEEE Transactions on Neural Networks and Learning Systems, 30 (2019), 851-864.
doi: 10.1109/TNNLS.2018.2851444. |
[44] |
M. Yuan and C. H. Zhang,
On tensor completion via nuclear norm minimization, Foundations of Computational Mathematics, 16 (2016), 1031-1068.
doi: 10.1007/s10208-015-9269-5. |
[45] |
M. Zhang, L. Yang and Z. H. Huang,
Minimum n-rank approximation via iterative hard thresholding, Applied Mathematics and Computation, 256 (2015), 860-875.
doi: 10.1016/j.amc.2015.01.099. |
[46] |
Z. Zhang and S. Aeron,
Exact tensor completion using t-SVD, IEEE Transactions on Signal Processing, 65 (2017), 1511-1526.
doi: 10.1109/TSP.2016.2639466. |
[47] |
Z. Zhang, G. Ely, S. Aeron, N. Hao and M. E. Kilmer, Novel methods for multilinear data completion and de-noising based on tensor-SVD, Preceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2014), 3842–3849.
doi: 10.1109/CVPR.2014.485. |
[48] |
P. Zhou, C. Lu, Z. Lin and C. Zhang,
Tensor factorization for low-rank tensor completion, IEEE Transactions on Image Processing, 27 (2018), 1152-1163.
doi: 10.1109/TIP.2017.2762595. |
[1] |
Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021001 |
[2] |
Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383 |
[3] |
Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020442 |
[4] |
Sergio Zamora. Tori can't collapse to an interval. Electronic Research Archive, , () : -. doi: 10.3934/era.2021005 |
[5] |
Yujuan Li, Huaifu Wang, Peipei Zhou, Guoshuang Zhang. Some properties of the cycle decomposition of WG-NLFSR. Advances in Mathematics of Communications, 2021, 15 (1) : 155-165. doi: 10.3934/amc.2020050 |
[6] |
Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021004 |
[7] |
Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020279 |
[8] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[9] |
Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020321 |
[10] |
Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017 |
[11] |
Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020125 |
[12] |
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020345 |
[13] |
Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291 |
[14] |
Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124 |
[15] |
Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381 |
[16] |
Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345 |
[17] |
Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020346 |
[18] |
Jie Shen, Nan Zheng. Efficient and accurate sav schemes for the generalized Zakharov systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 645-666. doi: 10.3934/dcdsb.2020262 |
[19] |
Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020443 |
[20] |
Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]