• Previous Article
    A multi-objective decision-making model for supplier selection considering transport discounts and supplier capacity constraints
  • JIMO Home
  • This Issue
  • Next Article
    Research on the parallel–batch scheduling with linearly lookahead model
November  2021, 17(6): 3559-3580. doi: 10.3934/jimo.2020133

Incentive contract design for supplier switching with considering learning effect

1. 

School of Management, Tianjin University of Technology, Tianjin, 300384, China

2. 

College of Management and Economics, Tianjin University, Tianjin, 300072, China

* Corresponding author: Xiaojie Sun

Received  April 2019 Revised  July 2020 Published  November 2021 Early access  August 2020

Fund Project: This work was supported by the National Natural Science Foundation of China (Grant No. 71971152)

For minimizing purchase cost, a buying firm would switch to suppliers with providing more favorable prices. This paper investigates the optimal switching decision of a buyer that may switch to an entrant supplier with production learning ability (which is regarded as a private information) under a principal-agent framework. The results obtained show that the switching cost and the learning effect have significant impacts on the buyer's switching decision. Only when the fixed component of the switching cost is relatively low, the buyer can be better off from a partial switching strategy; otherwise, the buyer should take an all-or-nothing switching strategy or no switching strategy. As the learning ability of the entrant supplier increases, the buyer prefers to make more switching. Finally, a benefit-sharing contract is proposed to evaluate the performance of the principal-agent contract, and we demonstrate that the principal-agent contract almost completely dominates the benefit-sharing contract.

Citation: Qian Wei, Jianxiong Zhang, Xiaojie Sun. Incentive contract design for supplier switching with considering learning effect. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3559-3580. doi: 10.3934/jimo.2020133
References:
[1]

P. S. Adler and K. B. Clark, Behind the learning curve: A sketch of the learning process, Management Science, 37 (1991), 267-281.  doi: 10.1287/mnsc.37.3.267.

[2]

K. J. Arrow, The economic implications of learning by doing, Review of Economic Studies, 29 (1962), 155-173.  doi: 10.2307/2295952.

[3]

M. Ben-daya and M. Hariga, Lead-time reduction in a stochastic inventory system with learning consideration, International Journal of Production Research, 41 (2003), 571-579.  doi: 10.1080/00207540210158807.

[4]

L. E. Bygballe, Toward a conceptualization of supplier-switching processes in business relationships, Journal of Purchasing and Supply Management, 23 (2017), 40-53.  doi: 10.1016/j.pursup.2016.04.007.

[5]

C. K. ChenC. C. Lo and Y. X. Liao, Optimal lot size with learning consideration on an imperfect production system with allowable shortages, International Journal of Production Economics, 113 (2008), 459-469.  doi: 10.1016/j.ijpe.2007.03.025.

[6]

M. ChengS. Xiao and G. Liu, Single-machine rescheduling problems with learning effect under disruptions, Journal of Industrial & Management Optimization, 14 (2018), 967-980.  doi: 10.3934/jimo.2017085.

[7]

P. Dasgupta and J. Stiglitz, Learning-by-doing, market structure and industrial and trade policies, Oxford Economic Papers, 40 (1988), 246-268.  doi: 10.7916/D8183HJM.

[8]

J. S. DemskiD. E. M. Sappington and P. T. Spiller, Managing Supplier Switching, The RAND Journal of Economics, 18 (1987), 77-97.  doi: 10.2307/2555536.

[9]

L. Feng and Y. L. Chan, Joint pricing and production decisions for new products with learning curve effects under upstream and downstream trade credits, European Journal of Operational Research, 272 (2019), 905-913.  doi: 10.1016/j.ejor.2018.07.003.

[10]

G. Friedl and S. M. Wagner, Supplier development or supplier switching?, International Journal of Production Research, 50 (2012), 3066-3079.  doi: 10.1080/00207543.2011.588804.

[11]

D. Fudenberg and J. Tirole, Capital as a commitment: Strategic investment to deter mobility, Journal of Economic Theory, 31 (1983), 227-250.  doi: 10.1016/0022-0531(83)90075-3.

[12]

A. GambleE. A. Juliusson and T. Gärling, Consumer attitudes towards switching supplier in three deregulated markets, The Journal of Socio-Economics, 38 (2009), 814-819.  doi: 10.1016/j.socec.2009.05.002.

[13]

B. C. Giri and C. H. Glock, A closed-loop supply chain with stochastic product returns and worker experience under learning and forgetting, International Journal of Production Research, 55 (2017), 6760-6778.  doi: 10.1080/00207543.2017.1347301.

[14]

J. B. Heide and A. M. Weiss, Vendor consideration and switching behavior for buyers in high-technology markets, Journal of Marketing, 59 (1995), 30-43.  doi: 10.1177/002224299505900303.

[15]

T. W. Hung and P. T. Chen, On the optimal replenishment in a finite planning horizon with learning effect of setup costs, Journal of Industrial & Management Optimization, 6 (2010), 425-433.  doi: 10.3934/jimo.2010.6.425.

[16]

M. Y. Jaber and M. Bonney, The economic manufacture/order quantity (EMQ/EOQ) and the learning curve: Past, present, and future, International Journal of Production Economics, 59 (1999), 93-102.  doi: 10.1016/S0925-5273(98)00027-9.

[17]

B. Kamrad and A. Siddique, Supply contracts, profit sharing, switching, reaction options, Management Science, 50 (2004), 64-82.  doi: 10.1287/mnsc.1030.0157.

[18]

S. L. LiA. MadhokG. Plaschka and R. Verma, Supplier-switching inertia and competitive asymmetry: A demand-side perspective, Decision Sciences, 37 (2006), 547-576.  doi: 10.1111/j.1540-5414.2006.00138.x.

[19]

T. LiS. P. Sethi and X. L. He, Dynamic pricing, production, and channel coordination with stochastic learning, Production and Operations Management, 24 (2015), 857-882.  doi: 10.1111/poms.12320.

[20]

C. LöfflerT. Pfeiffer and G. Schneider, Controlling for supplier switching in the presence of real options and asymmetric information, European Journal of Operational Research, 223 (2012), 690-700.  doi: 10.1016/j.ejor.2012.07.018.

[21]

M. MarchS. Zanoni and M. Y. Jaber, Economic production quantity model with learning in production, quality, reliability and energy efficiency, Computers & Industrial Engineering, 129 (2019), 502-511.  doi: 10.1016/j.cie.2019.02.009.

[22]

G. Mosheiov, Scheduling problems with a learning effect, European Journal of Operational Research, 132 (2012), 687-693.  doi: 10.1016/S0377-2217(00)00175-2.

[23]

R. B. Myerson, Incentive compatibility and the bargaining problem, Econometrica: Journal of the Econometric Society, 47 (1979), 61-73.  doi: 10.2307/1912346.

[24]

T. Pfeiffer, A dynamic model of supplier switching, European Journal of Operational Research, 207 (2010), 697-710.  doi: 10.1016/j.ejor.2010.05.030.

[25]

M. PlazaO. K. Ngwenyama and K. Rohlf, A comparative analysis of learning curves: Implications for new technology implementation management, European Journal of Operational Research, 200 (2010), 518-528.  doi: 10.1016/j.ejor.2009.01.010.

[26]

S. ShumS. L. Tong and T. T. Xiao, On the impact of uncertain cost reduction when selling to strategic consumers, Management Science, 63 (2016), 843-860.  doi: 10.1287/mnsc.2015.2355.

[27]

L. Silbermayr and S. Minner, Dual sourcing under disruption risk and cost improvement through learning, European Journal of Operational Research, 250 (2016), 226-238.  doi: 10.1016/j.ejor.2015.09.017.

[28]

A. M. Spence, The learning curve and competition, The Bell Journal of Economics, 12 (1981), 49-70.  doi: 10.2307/3003508.

[29]

A. T. Tsekrekos and A. N. Yannacopoulos, Optimal switching decisions under stochastic volatility with fast mean reversion, European Journal of Operational Research, 251 (2016), 148-157.  doi: 10.1016/j.ejor.2015.12.011.

[30]

M. UluskanA. B. Godfrey and J. A. Joines, Impact of competitive strategy and cost-focus on global supplier switching (reshore and relocation) decisions, The Journal of The Textile Institute, 108 (2017), 1308-1318.  doi: 10.1080/00405000.2016.1245596.

[31]

S. M. Wagner and G. Friedl, Supplier switching decisions, European Journal of Operational Research, 183 (2007), 700-717.  doi: 10.1016/j.ejor.2006.10.036.

[32]

T. P. Wright, Factors affecting the cost of airplanes, Journal of Aeronautical Sciences, 3 (1936), 122-128.  doi: 10.2514/8.155.

[33]

K. XuW. Y. Chiang and L. Liang, Dynamic pricing and channel efficiency in the presence of the cost learning effect, International Transactions in Operational Research, 18 (2011), 579-604.  doi: 10.1111/j.1475-3995.2011.00816.x.

[34]

L. E. Yelle, The learning curve: Historical review and comprehensive survey, Decision Sciences, 10 (1979), 302-328.  doi: 10.1111/j.1540-5915.1979.tb00026.x.

[35]

W. I. Zangwill and P. B. Kantor, The learning curve: A new perspective, International Transactions in Operational Research, 7 (2000), 595-607.  doi: 10.1016/S0969-6016(00)00022-8.

[36]

J. X. ZhangW. S. Tang and M. M. Hu, Optimal supplier switching with volume-dependent switching costs, International Journal of Production Economics, 161 (2015), 96-164.  doi: 10.1016/j.ijpe.2014.11.021.

[37]

J. X. ZhangQ. WeiG. W. Liu and W. S. Tang, A supplier switching model with the competitive reactions and economies of scale effects, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47 (2017), 2831-2843.  doi: 10.1109/TSMC.2016.2523926.

[38]

Q. ZhangW. S. Tang and J. X. Zhang, Green supply chain performance with cost learning and operational inefficiency effects, Journal of Cleaner Production, 112 (2016), 3267-3284.  doi: 10.1016/j.jclepro.2015.10.069.

[39]

X. ZhaoZ. Pang and K. E. Stecke, When does a retailer's advance selling capability benefit manufacturer, retailer, or both?, Production and Operations Management, 25 (2016), 1073-1087.  doi: 10.1111/poms.12535.

show all references

References:
[1]

P. S. Adler and K. B. Clark, Behind the learning curve: A sketch of the learning process, Management Science, 37 (1991), 267-281.  doi: 10.1287/mnsc.37.3.267.

[2]

K. J. Arrow, The economic implications of learning by doing, Review of Economic Studies, 29 (1962), 155-173.  doi: 10.2307/2295952.

[3]

M. Ben-daya and M. Hariga, Lead-time reduction in a stochastic inventory system with learning consideration, International Journal of Production Research, 41 (2003), 571-579.  doi: 10.1080/00207540210158807.

[4]

L. E. Bygballe, Toward a conceptualization of supplier-switching processes in business relationships, Journal of Purchasing and Supply Management, 23 (2017), 40-53.  doi: 10.1016/j.pursup.2016.04.007.

[5]

C. K. ChenC. C. Lo and Y. X. Liao, Optimal lot size with learning consideration on an imperfect production system with allowable shortages, International Journal of Production Economics, 113 (2008), 459-469.  doi: 10.1016/j.ijpe.2007.03.025.

[6]

M. ChengS. Xiao and G. Liu, Single-machine rescheduling problems with learning effect under disruptions, Journal of Industrial & Management Optimization, 14 (2018), 967-980.  doi: 10.3934/jimo.2017085.

[7]

P. Dasgupta and J. Stiglitz, Learning-by-doing, market structure and industrial and trade policies, Oxford Economic Papers, 40 (1988), 246-268.  doi: 10.7916/D8183HJM.

[8]

J. S. DemskiD. E. M. Sappington and P. T. Spiller, Managing Supplier Switching, The RAND Journal of Economics, 18 (1987), 77-97.  doi: 10.2307/2555536.

[9]

L. Feng and Y. L. Chan, Joint pricing and production decisions for new products with learning curve effects under upstream and downstream trade credits, European Journal of Operational Research, 272 (2019), 905-913.  doi: 10.1016/j.ejor.2018.07.003.

[10]

G. Friedl and S. M. Wagner, Supplier development or supplier switching?, International Journal of Production Research, 50 (2012), 3066-3079.  doi: 10.1080/00207543.2011.588804.

[11]

D. Fudenberg and J. Tirole, Capital as a commitment: Strategic investment to deter mobility, Journal of Economic Theory, 31 (1983), 227-250.  doi: 10.1016/0022-0531(83)90075-3.

[12]

A. GambleE. A. Juliusson and T. Gärling, Consumer attitudes towards switching supplier in three deregulated markets, The Journal of Socio-Economics, 38 (2009), 814-819.  doi: 10.1016/j.socec.2009.05.002.

[13]

B. C. Giri and C. H. Glock, A closed-loop supply chain with stochastic product returns and worker experience under learning and forgetting, International Journal of Production Research, 55 (2017), 6760-6778.  doi: 10.1080/00207543.2017.1347301.

[14]

J. B. Heide and A. M. Weiss, Vendor consideration and switching behavior for buyers in high-technology markets, Journal of Marketing, 59 (1995), 30-43.  doi: 10.1177/002224299505900303.

[15]

T. W. Hung and P. T. Chen, On the optimal replenishment in a finite planning horizon with learning effect of setup costs, Journal of Industrial & Management Optimization, 6 (2010), 425-433.  doi: 10.3934/jimo.2010.6.425.

[16]

M. Y. Jaber and M. Bonney, The economic manufacture/order quantity (EMQ/EOQ) and the learning curve: Past, present, and future, International Journal of Production Economics, 59 (1999), 93-102.  doi: 10.1016/S0925-5273(98)00027-9.

[17]

B. Kamrad and A. Siddique, Supply contracts, profit sharing, switching, reaction options, Management Science, 50 (2004), 64-82.  doi: 10.1287/mnsc.1030.0157.

[18]

S. L. LiA. MadhokG. Plaschka and R. Verma, Supplier-switching inertia and competitive asymmetry: A demand-side perspective, Decision Sciences, 37 (2006), 547-576.  doi: 10.1111/j.1540-5414.2006.00138.x.

[19]

T. LiS. P. Sethi and X. L. He, Dynamic pricing, production, and channel coordination with stochastic learning, Production and Operations Management, 24 (2015), 857-882.  doi: 10.1111/poms.12320.

[20]

C. LöfflerT. Pfeiffer and G. Schneider, Controlling for supplier switching in the presence of real options and asymmetric information, European Journal of Operational Research, 223 (2012), 690-700.  doi: 10.1016/j.ejor.2012.07.018.

[21]

M. MarchS. Zanoni and M. Y. Jaber, Economic production quantity model with learning in production, quality, reliability and energy efficiency, Computers & Industrial Engineering, 129 (2019), 502-511.  doi: 10.1016/j.cie.2019.02.009.

[22]

G. Mosheiov, Scheduling problems with a learning effect, European Journal of Operational Research, 132 (2012), 687-693.  doi: 10.1016/S0377-2217(00)00175-2.

[23]

R. B. Myerson, Incentive compatibility and the bargaining problem, Econometrica: Journal of the Econometric Society, 47 (1979), 61-73.  doi: 10.2307/1912346.

[24]

T. Pfeiffer, A dynamic model of supplier switching, European Journal of Operational Research, 207 (2010), 697-710.  doi: 10.1016/j.ejor.2010.05.030.

[25]

M. PlazaO. K. Ngwenyama and K. Rohlf, A comparative analysis of learning curves: Implications for new technology implementation management, European Journal of Operational Research, 200 (2010), 518-528.  doi: 10.1016/j.ejor.2009.01.010.

[26]

S. ShumS. L. Tong and T. T. Xiao, On the impact of uncertain cost reduction when selling to strategic consumers, Management Science, 63 (2016), 843-860.  doi: 10.1287/mnsc.2015.2355.

[27]

L. Silbermayr and S. Minner, Dual sourcing under disruption risk and cost improvement through learning, European Journal of Operational Research, 250 (2016), 226-238.  doi: 10.1016/j.ejor.2015.09.017.

[28]

A. M. Spence, The learning curve and competition, The Bell Journal of Economics, 12 (1981), 49-70.  doi: 10.2307/3003508.

[29]

A. T. Tsekrekos and A. N. Yannacopoulos, Optimal switching decisions under stochastic volatility with fast mean reversion, European Journal of Operational Research, 251 (2016), 148-157.  doi: 10.1016/j.ejor.2015.12.011.

[30]

M. UluskanA. B. Godfrey and J. A. Joines, Impact of competitive strategy and cost-focus on global supplier switching (reshore and relocation) decisions, The Journal of The Textile Institute, 108 (2017), 1308-1318.  doi: 10.1080/00405000.2016.1245596.

[31]

S. M. Wagner and G. Friedl, Supplier switching decisions, European Journal of Operational Research, 183 (2007), 700-717.  doi: 10.1016/j.ejor.2006.10.036.

[32]

T. P. Wright, Factors affecting the cost of airplanes, Journal of Aeronautical Sciences, 3 (1936), 122-128.  doi: 10.2514/8.155.

[33]

K. XuW. Y. Chiang and L. Liang, Dynamic pricing and channel efficiency in the presence of the cost learning effect, International Transactions in Operational Research, 18 (2011), 579-604.  doi: 10.1111/j.1475-3995.2011.00816.x.

[34]

L. E. Yelle, The learning curve: Historical review and comprehensive survey, Decision Sciences, 10 (1979), 302-328.  doi: 10.1111/j.1540-5915.1979.tb00026.x.

[35]

W. I. Zangwill and P. B. Kantor, The learning curve: A new perspective, International Transactions in Operational Research, 7 (2000), 595-607.  doi: 10.1016/S0969-6016(00)00022-8.

[36]

J. X. ZhangW. S. Tang and M. M. Hu, Optimal supplier switching with volume-dependent switching costs, International Journal of Production Economics, 161 (2015), 96-164.  doi: 10.1016/j.ijpe.2014.11.021.

[37]

J. X. ZhangQ. WeiG. W. Liu and W. S. Tang, A supplier switching model with the competitive reactions and economies of scale effects, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47 (2017), 2831-2843.  doi: 10.1109/TSMC.2016.2523926.

[38]

Q. ZhangW. S. Tang and J. X. Zhang, Green supply chain performance with cost learning and operational inefficiency effects, Journal of Cleaner Production, 112 (2016), 3267-3284.  doi: 10.1016/j.jclepro.2015.10.069.

[39]

X. ZhaoZ. Pang and K. E. Stecke, When does a retailer's advance selling capability benefit manufacturer, retailer, or both?, Production and Operations Management, 25 (2016), 1073-1087.  doi: 10.1111/poms.12535.

Figure 1.  The optimal switching ratio $ r^{*}(x) $ and transfer payment $ t^*(x) $
Figure 2.  The expected total cost reduction $ \hat{R}(\phi) $ with respect to the sharing proportion $ \phi $
Figure 3.  $ \rm{S_2} $'s profit and the total cost reduction difference under the two contracts via $ x $
Table 1.  Optimal switching strategies with $ I\geq m(0) $
$ \Psi\!=c_0\!-\gamma\!+k\!+I\!-p $ $ \Psi\geq 0 $ $ -m(0)-\gamma\leq\Psi <0 $ $ \Psi <-m(0)-\gamma $
$ r^*(x) $ $ \begin{array}{ll}r^*(x)=0,\\ x\in [0,\gamma].\end{array} $ $ r^*(x)=\left\{ \begin{array}{ll}0, x\in [0,x_1^*), \\1,x\in [x_1^*,\gamma]. \end{array}\right. $ $ \begin{array}{ll}r^*(x)=1,\\x\in [0,\gamma].\end{array} $
$ \Psi\!=c_0\!-\gamma\!+k\!+I\!-p $ $ \Psi\geq 0 $ $ -m(0)-\gamma\leq\Psi <0 $ $ \Psi <-m(0)-\gamma $
$ r^*(x) $ $ \begin{array}{ll}r^*(x)=0,\\ x\in [0,\gamma].\end{array} $ $ r^*(x)=\left\{ \begin{array}{ll}0, x\in [0,x_1^*), \\1,x\in [x_1^*,\gamma]. \end{array}\right. $ $ \begin{array}{ll}r^*(x)=1,\\x\in [0,\gamma].\end{array} $
Table 2.  Optimal switching strategies with $ I<m(0) $
$ \Psi\!=c_0\!-\gamma\!+k\!+I\!-p $ $ \Psi\geq 0 $ $ -I-\gamma\leq\Psi<0 $
$ r^*(x) $ $ r^*(x)\!=\!\!0,\ x\in [0,\gamma]. $ $ {r^*}(x) = \left\{ {\begin{array}{*{20}{l}} {0,\;x\; \in \;[0,x_1^*),}\\ {1,\;x\; \in \;[x_1^*,\gamma ].} \end{array}} \right.$
$ \!\!I\!\!-\!\!2\sqrt{Im(0)}\!\!-\!\!\gamma <\!\!\Psi\!\! <-\!\!I\!\!-\!\!\gamma $ $ \quad \!\!I\!\!-\!\!2m(0)\!\!-\gamma\!\! <\!\!\Psi\!\!\leq I\!\!-\!\!2\sqrt{Im(0)}\!\!-\!\!\gamma $ $ \Psi\leq I-2m(0)-\gamma $
$ r^*(x)\!\!=\!\!\left\{ \begin{array}{lll}0,\quad x\in [0,x_3^*),\\ \!\!-\frac{c_0-p+k}{2[m(x)-x]},\\ \quad x\in [x_3^*,x_2^*),\\ 1, \quad x\in [x_2^*,\gamma]. \end{array}\right. $ $ r^*(x)\!\!\!=\!\!\!\left\{ \begin{array}{ll} \!\!-\frac{c_0-p+k}{2[m(x)-x]}, \\ \quad \quad \quad x\in [0,x_2^*), \\1,\quad \quad x\in [x_2^*,\gamma]. \end{array}\right. $ $ \begin{array}{l} r^*(x)=1,\\ x\in [0,\gamma]. \end{array} $
$ \Psi\!=c_0\!-\gamma\!+k\!+I\!-p $ $ \Psi\geq 0 $ $ -I-\gamma\leq\Psi<0 $
$ r^*(x) $ $ r^*(x)\!=\!\!0,\ x\in [0,\gamma]. $ $ {r^*}(x) = \left\{ {\begin{array}{*{20}{l}} {0,\;x\; \in \;[0,x_1^*),}\\ {1,\;x\; \in \;[x_1^*,\gamma ].} \end{array}} \right.$
$ \!\!I\!\!-\!\!2\sqrt{Im(0)}\!\!-\!\!\gamma <\!\!\Psi\!\! <-\!\!I\!\!-\!\!\gamma $ $ \quad \!\!I\!\!-\!\!2m(0)\!\!-\gamma\!\! <\!\!\Psi\!\!\leq I\!\!-\!\!2\sqrt{Im(0)}\!\!-\!\!\gamma $ $ \Psi\leq I-2m(0)-\gamma $
$ r^*(x)\!\!=\!\!\left\{ \begin{array}{lll}0,\quad x\in [0,x_3^*),\\ \!\!-\frac{c_0-p+k}{2[m(x)-x]},\\ \quad x\in [x_3^*,x_2^*),\\ 1, \quad x\in [x_2^*,\gamma]. \end{array}\right. $ $ r^*(x)\!\!\!=\!\!\!\left\{ \begin{array}{ll} \!\!-\frac{c_0-p+k}{2[m(x)-x]}, \\ \quad \quad \quad x\in [0,x_2^*), \\1,\quad \quad x\in [x_2^*,\gamma]. \end{array}\right. $ $ \begin{array}{l} r^*(x)=1,\\ x\in [0,\gamma]. \end{array} $
Table 3.  Optimal transfer payments with $ I\geq m(0) $
$ \Psi=c_0-\gamma+k+I-p $ $ \Psi\geq 0 $ $ -m(0)-\gamma\leq\Psi <0 $ $ \Psi <-m(0)-\gamma $
$ t^*(x) $ $ \begin{array}{lll} t^*(x)=0,\\ x\in [0,\gamma].\end{array} $ $ t^*(x)=\left\{ \begin{array}{ll}0, \\ \quad x\in [0,x_1^*),\\ c_0-x_1^*,\\ \quad x\in [x_1^*,\gamma]. \end{array}\right. $ $ \begin{array}{lll} t^*(x)\!=\!c_0\!-\!x_1^*,\\ x\in [0,\gamma].\end{array} $
$ \Psi=c_0-\gamma+k+I-p $ $ \Psi\geq 0 $ $ -m(0)-\gamma\leq\Psi <0 $ $ \Psi <-m(0)-\gamma $
$ t^*(x) $ $ \begin{array}{lll} t^*(x)=0,\\ x\in [0,\gamma].\end{array} $ $ t^*(x)=\left\{ \begin{array}{ll}0, \\ \quad x\in [0,x_1^*),\\ c_0-x_1^*,\\ \quad x\in [x_1^*,\gamma]. \end{array}\right. $ $ \begin{array}{lll} t^*(x)\!=\!c_0\!-\!x_1^*,\\ x\in [0,\gamma].\end{array} $
Table 4.  Optimal transfer payments with $ I<m(0) $
$ \Psi\!=\!c_0\!-\!\gamma\!+\!k\!+\!I\!-\!p $ $ \Psi\!\geq\!0 $
$ t^*(x) $ $ t^*(x)=0,\ x\in [0,\gamma]. $
$ -I\!-\!\gamma\!\leq\!\Psi\! <\!0 $ $ I\!-\!2\sqrt{Im(0)}\!-\!\gamma\! <\!\Psi\! <\!-I\!-\!\gamma $
$ t^*(x)=\left\{ \begin{array}{ll}0, x\in [0,x_1^*), \\c_0-x_1^*, x\in [x_1^*,\gamma]. \end{array}\right. $ $ \!\!\!t^*(x)\!\!=\!\!\left\{ \begin{array}{lll}\!\!0, \\ \quad\quad\quad\quad \quad\quad x\in [0,x_3^*),\\ \!\!c_0 r^*(x)-x{r^2}^*(x)+ \int_{x_3^*}^{x}r^2(v){\rm d}v, \\ \quad\quad \quad\quad \quad\quad x\in [x_3^*,x_2^*), \\\!\!c_0-x_2^*+\int_{x_3^*}^{x_2^*}r^2(v){\rm d}v, \\\quad\quad \quad\quad \quad\quad x\in [x_2^*,\gamma]. \end{array}\right. $
$ \!\!I\!-\!\!2m(0)\!\!-\!\!\gamma\! <\!\Psi\!\leq \!I\!-\!\!2\sqrt{Im(0)}\!\!-\!\!\gamma $ $ \Psi\leq I-2m(0)-\gamma $
$ \!\!\!t^*(x)\!\!\!=\!\!\!\left\{ \begin{array}{lll} \!\!c_0r^*(x)\!\!-\!\!x{r^2}^*(x)\!\!+\!\!\int_{x_3^*}^{x}r^2(v){\rm d}v, \\ \quad x\in [0,x_2^*), \\\!\!c_0\!-\!x_2^*\!+\!\int_{x_3^*}^{x_2^*}r^2(v){\rm d}v, \\ \quad x\in [x_2^*,\gamma]. \end{array}\right. $ $ t^*(x)=c_0-x_1^*,\ x\in [0,\gamma]. $
$ \Psi\!=\!c_0\!-\!\gamma\!+\!k\!+\!I\!-\!p $ $ \Psi\!\geq\!0 $
$ t^*(x) $ $ t^*(x)=0,\ x\in [0,\gamma]. $
$ -I\!-\!\gamma\!\leq\!\Psi\! <\!0 $ $ I\!-\!2\sqrt{Im(0)}\!-\!\gamma\! <\!\Psi\! <\!-I\!-\!\gamma $
$ t^*(x)=\left\{ \begin{array}{ll}0, x\in [0,x_1^*), \\c_0-x_1^*, x\in [x_1^*,\gamma]. \end{array}\right. $ $ \!\!\!t^*(x)\!\!=\!\!\left\{ \begin{array}{lll}\!\!0, \\ \quad\quad\quad\quad \quad\quad x\in [0,x_3^*),\\ \!\!c_0 r^*(x)-x{r^2}^*(x)+ \int_{x_3^*}^{x}r^2(v){\rm d}v, \\ \quad\quad \quad\quad \quad\quad x\in [x_3^*,x_2^*), \\\!\!c_0-x_2^*+\int_{x_3^*}^{x_2^*}r^2(v){\rm d}v, \\\quad\quad \quad\quad \quad\quad x\in [x_2^*,\gamma]. \end{array}\right. $
$ \!\!I\!-\!\!2m(0)\!\!-\!\!\gamma\! <\!\Psi\!\leq \!I\!-\!\!2\sqrt{Im(0)}\!\!-\!\!\gamma $ $ \Psi\leq I-2m(0)-\gamma $
$ \!\!\!t^*(x)\!\!\!=\!\!\!\left\{ \begin{array}{lll} \!\!c_0r^*(x)\!\!-\!\!x{r^2}^*(x)\!\!+\!\!\int_{x_3^*}^{x}r^2(v){\rm d}v, \\ \quad x\in [0,x_2^*), \\\!\!c_0\!-\!x_2^*\!+\!\int_{x_3^*}^{x_2^*}r^2(v){\rm d}v, \\ \quad x\in [x_2^*,\gamma]. \end{array}\right. $ $ t^*(x)=c_0-x_1^*,\ x\in [0,\gamma]. $
Table 5.  Sensitivity analysis with respect to system parameters $ c_0, p, k, I. $
-80% -60% $ -40\% $ $ -20\% $ $ 0 $ $ 20\% $ $ 40\% $ $ 60\% $ $ 80\% $
$ \rm{ \rm{E}}(C) $ 1.0200 1.3400 1.6982 1.9775 2.2772 2.5239 2.7191 2.8631 2.9559
$ c_0 $$ \hat{ \rm{E}}(C) $ 1.3609 1.6088 1.8492 2.0805 2.3026 2.5406 2.7265 2.8656 2.9559
$ \Delta \rm{E} $ 0.3409 0.2688 0.1510 0.1030 0.0254 0.0167 0.0074 0.0025 0
$ \frac{\Delta \rm{E}}{ \rm{E}(C)} $ 33% 20% 8.9% 5.2% 1.1% 0.7% 0.3% 0.09% 0%
$ \rm{E}(C) $ 0.6000 1.2000 1.7375 2.0975 2.2772 2.3000 2.3000 2.3000 2.3000
$ p $$ \hat{ \rm{E}}(C) $ 0.6000 1.2000 1.7375 2.1060 2.3026 2.4786 2.6235 2.7449 2.8488
$ \Delta \rm{E} $ 0 0 0 0.0085 0.0254 0.1786 0.3235 0.4449 0.5488
$ \frac{\Delta \rm{E}}{ \rm{E}(C)} $ 0% 0% 0% 0.4% 1.1% 7.7% 14% 19% 24%
$ \rm{E}(C) $ 2.1340 2.1728 2.2114 2.2498 2.2772 2.3261 2.3639 2.3759 2.4071
$ k $$ \hat{ \rm{E}}(C) $ 2.1922 2.2196 2.2469 2.2739 2.3026 2.3340 2.3661 2.3974 2.4278
$ \Delta \rm{E} $ 0.0582 0.0468 0.0355 0.0241 0.0254 0.0079 0.0022 0.0215 0.0207
$ \frac{\Delta \rm{E}}{ \rm{E}(C)} $ 2.7% 2.2% 1.6% 1.1% 1.1% 0.34% 0.1% 0.9% 0.86%
$ \rm{E}(C) $ 1.8881 1.9881 2.0880 2.1870 2.2772 2.3600 2.4375 2.5100 2.5775
$ I $$ \hat{ \rm{E}}(C) $ 2.0793 2.1365 2.1925 2.2473 2.3026 2.3789 2.4507 2.5178 2.5810
$ \Delta \rm{E} $ 0.1912 0.1484 0.1045 0.0603 0.0254 0.0189 0.0132 0.0078 0.0035
$ \frac{\Delta \rm{E}}{ \rm{E}(C)} $ 10.1% 7.5% 5.0% 2.8% 1.1% 0.8% 0.5% 0.3% 0.1%
-80% -60% $ -40\% $ $ -20\% $ $ 0 $ $ 20\% $ $ 40\% $ $ 60\% $ $ 80\% $
$ \rm{ \rm{E}}(C) $ 1.0200 1.3400 1.6982 1.9775 2.2772 2.5239 2.7191 2.8631 2.9559
$ c_0 $$ \hat{ \rm{E}}(C) $ 1.3609 1.6088 1.8492 2.0805 2.3026 2.5406 2.7265 2.8656 2.9559
$ \Delta \rm{E} $ 0.3409 0.2688 0.1510 0.1030 0.0254 0.0167 0.0074 0.0025 0
$ \frac{\Delta \rm{E}}{ \rm{E}(C)} $ 33% 20% 8.9% 5.2% 1.1% 0.7% 0.3% 0.09% 0%
$ \rm{E}(C) $ 0.6000 1.2000 1.7375 2.0975 2.2772 2.3000 2.3000 2.3000 2.3000
$ p $$ \hat{ \rm{E}}(C) $ 0.6000 1.2000 1.7375 2.1060 2.3026 2.4786 2.6235 2.7449 2.8488
$ \Delta \rm{E} $ 0 0 0 0.0085 0.0254 0.1786 0.3235 0.4449 0.5488
$ \frac{\Delta \rm{E}}{ \rm{E}(C)} $ 0% 0% 0% 0.4% 1.1% 7.7% 14% 19% 24%
$ \rm{E}(C) $ 2.1340 2.1728 2.2114 2.2498 2.2772 2.3261 2.3639 2.3759 2.4071
$ k $$ \hat{ \rm{E}}(C) $ 2.1922 2.2196 2.2469 2.2739 2.3026 2.3340 2.3661 2.3974 2.4278
$ \Delta \rm{E} $ 0.0582 0.0468 0.0355 0.0241 0.0254 0.0079 0.0022 0.0215 0.0207
$ \frac{\Delta \rm{E}}{ \rm{E}(C)} $ 2.7% 2.2% 1.6% 1.1% 1.1% 0.34% 0.1% 0.9% 0.86%
$ \rm{E}(C) $ 1.8881 1.9881 2.0880 2.1870 2.2772 2.3600 2.4375 2.5100 2.5775
$ I $$ \hat{ \rm{E}}(C) $ 2.0793 2.1365 2.1925 2.2473 2.3026 2.3789 2.4507 2.5178 2.5810
$ \Delta \rm{E} $ 0.1912 0.1484 0.1045 0.0603 0.0254 0.0189 0.0132 0.0078 0.0035
$ \frac{\Delta \rm{E}}{ \rm{E}(C)} $ 10.1% 7.5% 5.0% 2.8% 1.1% 0.8% 0.5% 0.3% 0.1%
[1]

Chong Lai, Lishan Liu, Rui Li. The optimal solution to a principal-agent problem with unknown agent ability. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2579-2605. doi: 10.3934/jimo.2020084

[2]

Jong Soo Kim, Won Chan Jeong. A model for buyer and supplier coordination and information sharing in order-up-to systems. Journal of Industrial and Management Optimization, 2012, 8 (4) : 987-1015. doi: 10.3934/jimo.2012.8.987

[3]

Guoqiang Shi, Yong Wang, Dejian Xia, Yanfei Zhao. Information sharing when competing manufacturers adopt asymmetric channel in an e-tailer. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021207

[4]

Apostolis Pavlou. Asymmetric information in a bilateral monopoly. Journal of Dynamics and Games, 2016, 3 (2) : 169-189. doi: 10.3934/jdg.2016009

[5]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[6]

Bagher Bagherpour, Shahrooz Janbaz, Ali Zaghian. Optimal information ratio of secret sharing schemes on Dutch windmill graphs. Advances in Mathematics of Communications, 2019, 13 (1) : 89-99. doi: 10.3934/amc.2019005

[7]

Xiaomei Li, Renjing Liu, Zhongquan Hu, Jiamin Dong. Information sharing in two-tier supply chains considering cost reduction effort and information leakage. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021200

[8]

Nadia Loy, Andrea Tosin. Boltzmann-type equations for multi-agent systems with label switching. Kinetic and Related Models, 2021, 14 (5) : 867-894. doi: 10.3934/krm.2021027

[9]

Qing-you Yan, Juan-bo Li, Ju-liang Zhang. Licensing schemes in Stackelberg model under asymmetric information of product costs. Journal of Industrial and Management Optimization, 2007, 3 (4) : 763-774. doi: 10.3934/jimo.2007.3.763

[10]

Chun-xiang Guo, Dong Cai, Yu-yang Tan. Outsourcing contract design for the green transformation of manufacturing systems under asymmetric information. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021158

[11]

Hem Joshi, Suzanne Lenhart, Kendra Albright, Kevin Gipson. Modeling the effect of information campaigns on the HIV epidemic in Uganda. Mathematical Biosciences & Engineering, 2008, 5 (4) : 757-770. doi: 10.3934/mbe.2008.5.757

[12]

Kegui Chen, Xinyu Wang, Min Huang, Wai-Ki Ching. Salesforce contract design, joint pricing and production planning with asymmetric overconfidence sales agent. Journal of Industrial and Management Optimization, 2017, 13 (2) : 873-899. doi: 10.3934/jimo.2016051

[13]

Kegui Chen, Xinyu Wang, Min Huang, Wai-Ki Ching. Compensation plan, pricing and production decisions with inventory-dependent salvage value, and asymmetric risk-averse sales agent. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1397-1422. doi: 10.3934/jimo.2018013

[14]

Shichen Zhang, Jianxiong Zhang, Jiang Shen, Wansheng Tang. A joint dynamic pricing and production model with asymmetric reference price effect. Journal of Industrial and Management Optimization, 2019, 15 (2) : 667-688. doi: 10.3934/jimo.2018064

[15]

Yudong Li, Yonggang Li, Bei Sun, Yu Chen. Zinc ore supplier evaluation and recommendation method based on nonlinear adaptive online transfer learning. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021193

[16]

Ata Allah Taleizadeh, Leopoldo Eduardo Cárdenas-Barrón, Roya Sohani. Coordinating the supplier-retailer supply chain under noise effect with bundling and inventory strategies. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1701-1727. doi: 10.3934/jimo.2018118

[17]

Xiaojin Huang, Hongfu Yang, Jianhua Huang. Consensus stability analysis for stochastic multi-agent systems with multiplicative measurement noises and Markovian switching topologies. Numerical Algebra, Control and Optimization, 2022, 12 (3) : 601-610. doi: 10.3934/naco.2021024

[18]

Zhongbao Zhou, Yanfei Bai, Helu Xiao, Xu Chen. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial and Management Optimization, 2021, 17 (2) : 909-936. doi: 10.3934/jimo.2020004

[19]

Shinsuke Koyama, Lubomir Kostal. The effect of interspike interval statistics on the information gain under the rate coding hypothesis. Mathematical Biosciences & Engineering, 2014, 11 (1) : 63-80. doi: 10.3934/mbe.2014.11.63

[20]

Sven Blankenburg, Benjamin Lindner. The effect of positive interspike interval correlations on neuronal information transmission. Mathematical Biosciences & Engineering, 2016, 13 (3) : 461-481. doi: 10.3934/mbe.2016001

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (282)
  • HTML views (617)
  • Cited by (1)

Other articles
by authors

[Back to Top]