November  2021, 17(6): 3581-3602. doi: 10.3934/jimo.2020134

A multi-objective decision-making model for supplier selection considering transport discounts and supplier capacity constraints

1. 

Faculty of Engineering, University of Kurdistan, Pasdaran Blvd., Post Box: 416, Sanandaj, Iran

2. 

MSC of Industrial Engineering, University of Kurdistan, Sanandaj, Iran

* Corresponding author: Alireza Eydi

Received  December 2019 Revised  June 2020 Published  November 2021 Early access  August 2020

The present study considers the transport discounts and capacity constraints for the suppliers and manufacturers simultaneously to provide a multi-objective decision-making model for supplier selection on a three-level supply chain. For this purpose, it begins with presenting a nonlinear mixed-integer model of the problem, where the objectives include the minimization of the logistics costs and lead time. Subsequently, the NSGA-Ⅱ algorithm is developed to solve the large-scale model of the problem and simultaneously optimize the two objectives to achieve Pareto-optimal solutions. To test the efficiency of the proposed algorithm, several synthetic examples of various sizes are then generated and solved. Finally, the paper compares the performance of the proposed metaheuristic algorithm with the augmented epsilon-constraint method. In summary, the findings of this study provided researchers and industries to easily access to a cohesive model of supplier selection considering transportation that are essential to the solution of many real-world challenging logistics issues.

Citation: Alireza Eydi, Rozhin Saedi. A multi-objective decision-making model for supplier selection considering transport discounts and supplier capacity constraints. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3581-3602. doi: 10.3934/jimo.2020134
References:
[1]

A. Aguezzoul and P. Ladet, A nonlinear multiobjective approach for the supplier selection, integrating transportation policies, J. Model. Man., 2, (2007), 157–169. doi: 10.1108/17465660710763434.

[2]

N. Aissaoui, M. Haouari and E. Hassini, Supplier selection and order lot sizing modeling: A review, Comput. Oper. Res., 34 (2007), no. 12, 3516–3540. doi: 10.1016/j.cor.2006.01.016.

[3]

S. Amin and G. Zhang, An integrated model for closed-loop supply chain configuration and supplier selection: Multi-objective approach, Expert Syst. Appl., 39 (2012), no. 8, 6782–6791. doi: 10.1016/j.eswa.2011.12.056.

[4]

T. F. Anthony and F. P. Buffa, Strategic purchase scheduling, J. Purch. Mater. Manag., 13 (1977), no. 3, 27–31. doi: 10.1111/j.1745-493X.1977.tb00400.x.

[5]

F. Arikan, A fuzzy solution approach for multi objective supplier selection, Expert Syst. Appl., 40 (2013), no. 3,947–952. doi: 10.1016/j.eswa.2012.05.051.

[6]

E. Babaee Tirkolaee, A. Goli, G.-W. Weber, Multi-Objective Aggregate Production Planning Model Considering Overtime and Outsourcing Options Under Fuzzy Seasonal Demand, in Adv. Manuf. II, Springer, 2019, 81–96.

[7]

E. Babaee Tirkolaee, A. Mardani, Z. Dashtian, M. Soltani and G.-W. Weber, A novel hybrid method using fuzzy decision making and multi-objective programming for sustainable-reliable supplier selection in two-echelon supply chain design, J. of Cleaner Prod., 250 (2020), 119517. doi: 10.1016/j.jclepro.2019.119517.

[8]

M. Bevilacqua, F. E. Ciarapica and G. Giacchetta, A fuzzy-QFD approach to supplier selection, J. Purchase Supp. Man., 12 (2006), no. 1, 14–27. doi: 10.1016/j.pursup.2006.02.001.

[9]

E. Buzdogan-Lindenmayr, G. Kara and A. Selcuk-Kestel, Sevtap Assessment of supplier risk for copper procurement, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 68 (2019), no. 1, 1045–1060. doi: 10.31801/cfsuasmas.501491.

[10]

S. Chou and Y. Chang, A decision support system for supplier selection based on a strategy-aligned fuzzy SMART approach, Expert Syst. Appl., 34 (2008), no. 4, 2241–2253. doi: 10.1016/j.eswa.2007.03.001.

[11]

K. Deb and A. Pratap, A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ, IEEE Trans. E. Comput., 6 (2002), no. 2,182–197. doi: 10.1109/4235.996017.

[12]

E. A. Demirtas and O. Ustun, Analytic network process and multi-period goal programming integration in purchasing decisions, Comput. Ind. Eng., 56 (2009), no. 2,677–690. doi: 10.1016/j.cie.2006.12.006.

[13]

S. DengR. AydinC. K. K. Kwong and Y. Huang, Integrated product line design and supplier selection: A multi-objective optimization paradigm, Comput. Ind. Eng., 70 (2014), 150-158.  doi: 10.1016/j.cie.2014.01.011.

[14]

R. M. Ebrahim, J. Razmi and H. Haleh, Scatter search algorithm for supplier selection and order lot sizing under multiple price discount environment, Adv. Eng. Softw., 40 (2009), no. 9,766–776. doi: 10.1016/j.advengsoft.2009.02.003.

[15]

A. Ekici, An improved model for supplier selection under capacity constraint and multiple criteria, Int. J. Prod. Econ., 141 (2013), no. 2,574–581. doi: 10.1016/j.ijpe.2012.09.013.

[16]

R. Farzipoor Sean, A new mathematical approach for suppliers selection: Accounting for non-homogeneity is important, Appl. Math. Comput., 185 (2007), no. 1, 84–95. doi: 10.1016/j.amc.2006.07.071.

[17]

A. Gaballa, Minimum cost allocation of tenders, J. Oper. Res. Soc., 25 (1974), no. 3,389–398. doi: 10.1057/jors.1974.73.

[18]

S. Ghodsypour and C. O$\mathop {\rm{B}}\limits^{'} $rien, The total cost of logistics in supplier selection, under conditions of multiple sourcing, multiple criteria and capacity constraint, Int. J. Prod. Econ., 73 (2001), no. 1, 15–27. doi: 10.1016/S0925-5273(01)00093-7.

[19]

X. Hu and J. G. Motwani, Minimizing downside risks for global sourcing under price-sensitive stochastic demand, exchange rate uncertainties and supplier capacity constraints, Int. J. Prod. Econ., 147 (2014), 398-409.  doi: 10.1016/j.ijpe.2013.04.045.

[20]

O. JadidiS. Zolfaghari and S. Cavalieri, A new normalized goal programming model for multi-objective problems: A case of supplier selection and order allocation, Int. J. Prod. Econ., 148 (2014), 158-165.  doi: 10.1016/j.ijpe.2013.10.005.

[21]

R. Jazemi, J. Gheidar-Kheljani and S. H. Ghodsypour, Modeling the multiobjective problem of supplier selection, taking into account the benefits of the buyer and the suppliers simultaneously, IEEE Trans. Ind. Inform., 7 (2010), no. 3,517–526. doi: 10.1109/TII.2011.2158835.

[22]

D. KannanR. KhodaverdiL. OlfatA. Jafarian and A. Diabat, Integrated fuzzy multi criteria decision making method and multi-objective programming approach for supplier selection and order allocation in a green supply chain, J. Clean. Prod., 47 (2013), 355-367.  doi: 10.1016/j.jclepro.2013.02.010.

[23]

M. Khosroabadi, M. Lotfi and H. Khademizare, Supplier selection program and sizing orders for products at a discounted price and the cost of transportation, J. of Ind. Eng. Res. in Prod. Sys., (2013), no. 1,139–153.

[24]

Z. Liao and J. Rittscher, A multi-objective supplier selection model under stochastic demand conditions, 105 (2007), 150–159 doi: 10.1016/j.ijpe.2006.03.001.

[25]

R. Lotfi, G.-W. Weber, S. M. Sajadifar and N. Mardani, Interdependent demand in the two-period newsvendor problem, J. Ind. Manag. Optim., 16 (2020), no. 1,117–140. doi: 10.3934/jimo.2018143.

[26]

G. Mavrotas, Effective implementation of the $\epsilon$-constraint method in multi-objective mathematical programming problems, Appl. Math. Comput., 213 (2009), no. 2,455–465. doi: 10.1016/j.amc.2009.03.037.

[27]

G. Mavrotas and K. Florios, An improved version of the augmented $\varepsilon$-constraint method (AUGMECON 2) for finding the exact pareto set in multi-objective integer programming problems, Appl. Math. Comput., 219 (2013), no. 18, 9652–9669. doi: 10.1016/j.amc.2013.03.002.

[28]

A. Mendoza and J. A. Ventura, Analytical models for supplier selection and order quantity allocation, Appl. Math. Model., 36 (2012), no. 8, 3826–3835. doi: 10.1016/j.apm.2011.11.025.

[29]

K. S. Moghaddam, Fuzzy multi-objective model for supplier selection and order allocation in reverse logistics systems under supply and demand uncertainty, Expert Syst. Appl., 42 (2015), 6237-6254.  doi: 10.1016/j.eswa.2015.02.010.

[30]

D. MohammaditabarS. H. Ghodsypour and A. Hafezalkotob, A game theoretic analysis in capacity-constrained supplier-selection and cooperation by considering the total supply chain inventory costs, Int. J. Prod. Econ., 181 (2016), 87-97.  doi: 10.1016/j.ijpe.2015.11.016.

[31]

S. Nazari-Shirkouhi, H. Shakouri, B. Javadi and A. Keramati, Supplier selection and order allocation problem using a two-phase fuzzy multi-objective linear programming, Appl. Math. Model., 37 (2013), no. 22, 9308–9323. doi: 10.1016/j.apm.2013.04.045.

[32]

A. Pan, Allocation of order quantity among suppliers, J. Purch. Mater. Manag., 25 (1989), no. 3, 36–39. doi: 10.1111/j.1745-493X.1989.tb00489.x.

[33]

K. Shaw, R. Shankar, S. S. Yadav and L. S. Thakur, Supplier selection using fuzzy AHP and fuzzy multi-objective linear programming for developing low carbon supply chain, Expert Syst. Appl., 39 (2012), no. 9, 8182–8192. doi: 10.1016/j.eswa.2012.01.149.

[34]

Y.-C. Tsao and J.-C. Lu, A supply chain network design considering transportation cost discounts, Transp. Res. Part E Logist. Transp. Rev., 48 (2012), no. 2,401–414. doi: 10.1016/j.tre.2011.10.004.

[35]

C. A. Weber, J. R. Current and W. C. Benton, Vendor selection criteria and methods, Eur. J. Oper. Res., 50 (1991), no. 1, 2–18. doi: 10.1016/0377-2217(91)90033-R.

[36]

W. Xia and Z. Wu, Supplier selection with multiple criteria in volume discount environments, Omega, 35 (2007), no. 5,494–504. doi: 10.1016/j.omega.2005.09.002.

[37]

E. Zitzler, K. Deb and L. Thiele, Comparison of multiobjective evolutionary algorithms: Empirical results, E Comput., 8 (2000), no. 2,173–195. doi: 10.1162/106365600568202.

show all references

References:
[1]

A. Aguezzoul and P. Ladet, A nonlinear multiobjective approach for the supplier selection, integrating transportation policies, J. Model. Man., 2, (2007), 157–169. doi: 10.1108/17465660710763434.

[2]

N. Aissaoui, M. Haouari and E. Hassini, Supplier selection and order lot sizing modeling: A review, Comput. Oper. Res., 34 (2007), no. 12, 3516–3540. doi: 10.1016/j.cor.2006.01.016.

[3]

S. Amin and G. Zhang, An integrated model for closed-loop supply chain configuration and supplier selection: Multi-objective approach, Expert Syst. Appl., 39 (2012), no. 8, 6782–6791. doi: 10.1016/j.eswa.2011.12.056.

[4]

T. F. Anthony and F. P. Buffa, Strategic purchase scheduling, J. Purch. Mater. Manag., 13 (1977), no. 3, 27–31. doi: 10.1111/j.1745-493X.1977.tb00400.x.

[5]

F. Arikan, A fuzzy solution approach for multi objective supplier selection, Expert Syst. Appl., 40 (2013), no. 3,947–952. doi: 10.1016/j.eswa.2012.05.051.

[6]

E. Babaee Tirkolaee, A. Goli, G.-W. Weber, Multi-Objective Aggregate Production Planning Model Considering Overtime and Outsourcing Options Under Fuzzy Seasonal Demand, in Adv. Manuf. II, Springer, 2019, 81–96.

[7]

E. Babaee Tirkolaee, A. Mardani, Z. Dashtian, M. Soltani and G.-W. Weber, A novel hybrid method using fuzzy decision making and multi-objective programming for sustainable-reliable supplier selection in two-echelon supply chain design, J. of Cleaner Prod., 250 (2020), 119517. doi: 10.1016/j.jclepro.2019.119517.

[8]

M. Bevilacqua, F. E. Ciarapica and G. Giacchetta, A fuzzy-QFD approach to supplier selection, J. Purchase Supp. Man., 12 (2006), no. 1, 14–27. doi: 10.1016/j.pursup.2006.02.001.

[9]

E. Buzdogan-Lindenmayr, G. Kara and A. Selcuk-Kestel, Sevtap Assessment of supplier risk for copper procurement, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 68 (2019), no. 1, 1045–1060. doi: 10.31801/cfsuasmas.501491.

[10]

S. Chou and Y. Chang, A decision support system for supplier selection based on a strategy-aligned fuzzy SMART approach, Expert Syst. Appl., 34 (2008), no. 4, 2241–2253. doi: 10.1016/j.eswa.2007.03.001.

[11]

K. Deb and A. Pratap, A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ, IEEE Trans. E. Comput., 6 (2002), no. 2,182–197. doi: 10.1109/4235.996017.

[12]

E. A. Demirtas and O. Ustun, Analytic network process and multi-period goal programming integration in purchasing decisions, Comput. Ind. Eng., 56 (2009), no. 2,677–690. doi: 10.1016/j.cie.2006.12.006.

[13]

S. DengR. AydinC. K. K. Kwong and Y. Huang, Integrated product line design and supplier selection: A multi-objective optimization paradigm, Comput. Ind. Eng., 70 (2014), 150-158.  doi: 10.1016/j.cie.2014.01.011.

[14]

R. M. Ebrahim, J. Razmi and H. Haleh, Scatter search algorithm for supplier selection and order lot sizing under multiple price discount environment, Adv. Eng. Softw., 40 (2009), no. 9,766–776. doi: 10.1016/j.advengsoft.2009.02.003.

[15]

A. Ekici, An improved model for supplier selection under capacity constraint and multiple criteria, Int. J. Prod. Econ., 141 (2013), no. 2,574–581. doi: 10.1016/j.ijpe.2012.09.013.

[16]

R. Farzipoor Sean, A new mathematical approach for suppliers selection: Accounting for non-homogeneity is important, Appl. Math. Comput., 185 (2007), no. 1, 84–95. doi: 10.1016/j.amc.2006.07.071.

[17]

A. Gaballa, Minimum cost allocation of tenders, J. Oper. Res. Soc., 25 (1974), no. 3,389–398. doi: 10.1057/jors.1974.73.

[18]

S. Ghodsypour and C. O$\mathop {\rm{B}}\limits^{'} $rien, The total cost of logistics in supplier selection, under conditions of multiple sourcing, multiple criteria and capacity constraint, Int. J. Prod. Econ., 73 (2001), no. 1, 15–27. doi: 10.1016/S0925-5273(01)00093-7.

[19]

X. Hu and J. G. Motwani, Minimizing downside risks for global sourcing under price-sensitive stochastic demand, exchange rate uncertainties and supplier capacity constraints, Int. J. Prod. Econ., 147 (2014), 398-409.  doi: 10.1016/j.ijpe.2013.04.045.

[20]

O. JadidiS. Zolfaghari and S. Cavalieri, A new normalized goal programming model for multi-objective problems: A case of supplier selection and order allocation, Int. J. Prod. Econ., 148 (2014), 158-165.  doi: 10.1016/j.ijpe.2013.10.005.

[21]

R. Jazemi, J. Gheidar-Kheljani and S. H. Ghodsypour, Modeling the multiobjective problem of supplier selection, taking into account the benefits of the buyer and the suppliers simultaneously, IEEE Trans. Ind. Inform., 7 (2010), no. 3,517–526. doi: 10.1109/TII.2011.2158835.

[22]

D. KannanR. KhodaverdiL. OlfatA. Jafarian and A. Diabat, Integrated fuzzy multi criteria decision making method and multi-objective programming approach for supplier selection and order allocation in a green supply chain, J. Clean. Prod., 47 (2013), 355-367.  doi: 10.1016/j.jclepro.2013.02.010.

[23]

M. Khosroabadi, M. Lotfi and H. Khademizare, Supplier selection program and sizing orders for products at a discounted price and the cost of transportation, J. of Ind. Eng. Res. in Prod. Sys., (2013), no. 1,139–153.

[24]

Z. Liao and J. Rittscher, A multi-objective supplier selection model under stochastic demand conditions, 105 (2007), 150–159 doi: 10.1016/j.ijpe.2006.03.001.

[25]

R. Lotfi, G.-W. Weber, S. M. Sajadifar and N. Mardani, Interdependent demand in the two-period newsvendor problem, J. Ind. Manag. Optim., 16 (2020), no. 1,117–140. doi: 10.3934/jimo.2018143.

[26]

G. Mavrotas, Effective implementation of the $\epsilon$-constraint method in multi-objective mathematical programming problems, Appl. Math. Comput., 213 (2009), no. 2,455–465. doi: 10.1016/j.amc.2009.03.037.

[27]

G. Mavrotas and K. Florios, An improved version of the augmented $\varepsilon$-constraint method (AUGMECON 2) for finding the exact pareto set in multi-objective integer programming problems, Appl. Math. Comput., 219 (2013), no. 18, 9652–9669. doi: 10.1016/j.amc.2013.03.002.

[28]

A. Mendoza and J. A. Ventura, Analytical models for supplier selection and order quantity allocation, Appl. Math. Model., 36 (2012), no. 8, 3826–3835. doi: 10.1016/j.apm.2011.11.025.

[29]

K. S. Moghaddam, Fuzzy multi-objective model for supplier selection and order allocation in reverse logistics systems under supply and demand uncertainty, Expert Syst. Appl., 42 (2015), 6237-6254.  doi: 10.1016/j.eswa.2015.02.010.

[30]

D. MohammaditabarS. H. Ghodsypour and A. Hafezalkotob, A game theoretic analysis in capacity-constrained supplier-selection and cooperation by considering the total supply chain inventory costs, Int. J. Prod. Econ., 181 (2016), 87-97.  doi: 10.1016/j.ijpe.2015.11.016.

[31]

S. Nazari-Shirkouhi, H. Shakouri, B. Javadi and A. Keramati, Supplier selection and order allocation problem using a two-phase fuzzy multi-objective linear programming, Appl. Math. Model., 37 (2013), no. 22, 9308–9323. doi: 10.1016/j.apm.2013.04.045.

[32]

A. Pan, Allocation of order quantity among suppliers, J. Purch. Mater. Manag., 25 (1989), no. 3, 36–39. doi: 10.1111/j.1745-493X.1989.tb00489.x.

[33]

K. Shaw, R. Shankar, S. S. Yadav and L. S. Thakur, Supplier selection using fuzzy AHP and fuzzy multi-objective linear programming for developing low carbon supply chain, Expert Syst. Appl., 39 (2012), no. 9, 8182–8192. doi: 10.1016/j.eswa.2012.01.149.

[34]

Y.-C. Tsao and J.-C. Lu, A supply chain network design considering transportation cost discounts, Transp. Res. Part E Logist. Transp. Rev., 48 (2012), no. 2,401–414. doi: 10.1016/j.tre.2011.10.004.

[35]

C. A. Weber, J. R. Current and W. C. Benton, Vendor selection criteria and methods, Eur. J. Oper. Res., 50 (1991), no. 1, 2–18. doi: 10.1016/0377-2217(91)90033-R.

[36]

W. Xia and Z. Wu, Supplier selection with multiple criteria in volume discount environments, Omega, 35 (2007), no. 5,494–504. doi: 10.1016/j.omega.2005.09.002.

[37]

E. Zitzler, K. Deb and L. Thiele, Comparison of multiobjective evolutionary algorithms: Empirical results, E Comput., 8 (2000), no. 2,173–195. doi: 10.1162/106365600568202.

Figure 1.  Demonstration of a chromosome (i.e., a solution) in the proposed metaheuristic algorithm
Figure 2.  Demonstration of the solution of the case study
Figure 4.  Demonstration of the mutation operator
Figure 4.  Demonstration of the mutation operator
Figure 5.  Setting the parameters of the algorithm
Figure 6.  Comparison of the Pareto front for a numerical example
Figure 7.  The Pareto front for a large-scale example
Table 1.  Details of the sample problems
Sample No. No. of suppliers No. of warehouses No. of customers No. of price levels
1 2 2 3 2
2 2 2 4 2
3 2 3 5 2
4 3 3 4 2
5 3 4 6 2
6 3 5 8 2
7 4 4 8 2
8 4 6 12 2
9 4 8 16 2
10 20 30 40 2
11 25 20 45 2
12 30 25 50 2
13 2 2 4 4
14 2 3 5 4
15 3 3 4 4
16 3 4 6 4
Sample No. No. of suppliers No. of warehouses No. of customers No. of price levels
1 2 2 3 2
2 2 2 4 2
3 2 3 5 2
4 3 3 4 2
5 3 4 6 2
6 3 5 8 2
7 4 4 8 2
8 4 6 12 2
9 4 8 16 2
10 20 30 40 2
11 25 20 45 2
12 30 25 50 2
13 2 2 4 4
14 2 3 5 4
15 3 3 4 4
16 3 4 6 4
Table 2.  Parametrization of the algorithm
The initial population 40-30-20 Mutation rate 0.1-0.3-0.5
Maximum No. of iterations 400-300-100 Crossover rate 0.9-0.7-0.5
The initial population 40-30-20 Mutation rate 0.1-0.3-0.5
Maximum No. of iterations 400-300-100 Crossover rate 0.9-0.7-0.5
Table 3.  Results of the parametrization of the proposed metaheuristic algorithm
The initial population 30 Penalty for violation of storage capacity 30000
Maximum No. of iterations 300 Penalty for violation of supplier capacity 30000
Crossover rate 0.7 Penalty for violation of type Ⅰ carrier capacity 30000
Mutation rate 0.3 Penalty for violation of type Ⅱ carrier capacity 30000
The initial population 30 Penalty for violation of storage capacity 30000
Maximum No. of iterations 300 Penalty for violation of supplier capacity 30000
Crossover rate 0.7 Penalty for violation of type Ⅰ carrier capacity 30000
Mutation rate 0.3 Penalty for violation of type Ⅱ carrier capacity 30000
Table 4.  Sample problems with two price levels
Example number Solutions of the mathematical model Metaheuristic algorithm The number of Pareto solutions Solution time(s)
Total cost Lead time Total cost Lead time Mathematical model Metaheuristic algorithm Mathematical model Metaheuristic algorithm
1 68341.34 192.79 68341.34 192.79 5 23 5 21
38878.15 240.99 38878.15 240.99
2 121651.55 314.90 11737.38 314.90 5 24 8 24
64614.87 574.81 64614.87 574.81
3 75789.91 235.26 78716.08 235.23 6 27 782 21
53963.32 318.05 52274.41 327.23
4 78533.08 209.05 78716.08 209.07 8 27 70 21
43011.82 303.94 42183.37 431.03
5 81293.42 291.36 87200.36 270.90 9 38 2713 22
50979.63 531.78 49854.45 645.99
6 219299.25 556.65 221539.56 591.10 5 38 2471 18
137964.35 1043.08 136235.26 991.28
7 150034.73 456.26 145148.71 454.95 2 28 1221 17
121703.96 696.96 104719.58 738.18
8 - - 197548.38 454.95 0 59 3600 17
- - 141281.50 1336.12
9 - - 317966.30 1410.04 0 63 7200 9
- - 295530.83 1898.55
10 - - 692358.54 3516.57 - 538 - 15
- - 614931.40 5127.21
11 - - 1395014.66 304484.07 - 436 - 9
- - 1358331.99 305700.94
12 - - 1319417.25 274612.41 - 693 - 9
- - - -
Example number Solutions of the mathematical model Metaheuristic algorithm The number of Pareto solutions Solution time(s)
Total cost Lead time Total cost Lead time Mathematical model Metaheuristic algorithm Mathematical model Metaheuristic algorithm
1 68341.34 192.79 68341.34 192.79 5 23 5 21
38878.15 240.99 38878.15 240.99
2 121651.55 314.90 11737.38 314.90 5 24 8 24
64614.87 574.81 64614.87 574.81
3 75789.91 235.26 78716.08 235.23 6 27 782 21
53963.32 318.05 52274.41 327.23
4 78533.08 209.05 78716.08 209.07 8 27 70 21
43011.82 303.94 42183.37 431.03
5 81293.42 291.36 87200.36 270.90 9 38 2713 22
50979.63 531.78 49854.45 645.99
6 219299.25 556.65 221539.56 591.10 5 38 2471 18
137964.35 1043.08 136235.26 991.28
7 150034.73 456.26 145148.71 454.95 2 28 1221 17
121703.96 696.96 104719.58 738.18
8 - - 197548.38 454.95 0 59 3600 17
- - 141281.50 1336.12
9 - - 317966.30 1410.04 0 63 7200 9
- - 295530.83 1898.55
10 - - 692358.54 3516.57 - 538 - 15
- - 614931.40 5127.21
11 - - 1395014.66 304484.07 - 436 - 9
- - 1358331.99 305700.94
12 - - 1319417.25 274612.41 - 693 - 9
- - - -
Table 5.  Sample problems with four price levels
Example number Mathematical model solutions Metaheuristic algorithm The number of Pareto solutions Solution time(s)
Total cost Lead time Total cost Lead time Mathematical model Metaheuristic algorithm Mathematical model Metaheuristic algorithm
13 58818.69 178.97 55591.93 178.97 12 37 12 16
53372.19 192.41 48951.15 438.95
14 85499.87 351.63 92925.05 92925.05 2090 40 5 23
62789.30 492.64 62935.46 497.88
15 83856.96 263.83 99922.57 253.48 2113 33 9 22
53647.19 605.75 53384.45 593.19
16 108712.51 369.94 100694.07 394.24 2373 42 6 14
       
Example number Mathematical model solutions Metaheuristic algorithm The number of Pareto solutions Solution time(s)
Total cost Lead time Total cost Lead time Mathematical model Metaheuristic algorithm Mathematical model Metaheuristic algorithm
13 58818.69 178.97 55591.93 178.97 12 37 12 16
53372.19 192.41 48951.15 438.95
14 85499.87 351.63 92925.05 92925.05 2090 40 5 23
62789.30 492.64 62935.46 497.88
15 83856.96 263.83 99922.57 253.48 2113 33 9 22
53647.19 605.75 53384.45 593.19
16 108712.51 369.94 100694.07 394.24 2373 42 6 14
       
Table 6.  Comparison of the proposed mathematical model and algorithm based on diversity and spread criteria
Example No. Spread criterion Diversity and uniformity criteria
Mathematical model Metaheuristic algorithm Mathematical model Metaheuristic algorithm
1 29714.36 29463.23 0.97 1.43
2 54007.81 52753.16 0.60 1.68
3 19401.56 26441.83 0.65 0.85
4 14492.95 25051.45 0.52 1.00
5 25165.95 37347.79 0.24 0.78
6 41666.65 85305.24 0.74 1.10
7 28331.79 40430.12 - 1.00
8 - 29245.55 - 0.93
9 - 22440.79 - 0.74
10 - 77443.89 - 0.92
11 - 36702.85 - 0.80
12 - 220125.97 - 1.51
13 5446.50 6645.87 0.68 0.99
14 11106.65 2990.05 0.32 0.77
15 28204.12 46539.36 0.24 0.97
16 9979.74 15707.09 0.72 0.93
Example No. Spread criterion Diversity and uniformity criteria
Mathematical model Metaheuristic algorithm Mathematical model Metaheuristic algorithm
1 29714.36 29463.23 0.97 1.43
2 54007.81 52753.16 0.60 1.68
3 19401.56 26441.83 0.65 0.85
4 14492.95 25051.45 0.52 1.00
5 25165.95 37347.79 0.24 0.78
6 41666.65 85305.24 0.74 1.10
7 28331.79 40430.12 - 1.00
8 - 29245.55 - 0.93
9 - 22440.79 - 0.74
10 - 77443.89 - 0.92
11 - 36702.85 - 0.80
12 - 220125.97 - 1.51
13 5446.50 6645.87 0.68 0.99
14 11106.65 2990.05 0.32 0.77
15 28204.12 46539.36 0.24 0.97
16 9979.74 15707.09 0.72 0.93
Table 7.  Comparison between different solution methods regarding average processing time and the number of Pareto solutions obtained for the small-sized problem
Methodology Average processing time (in seconds) The number of Pareto solutions
augmented epsilon-constraint method 1897 6
Metaheuristic algorithm 38 19
Methodology Average processing time (in seconds) The number of Pareto solutions
augmented epsilon-constraint method 1897 6
Metaheuristic algorithm 38 19
[1]

Masoud Mohammadzadeh, Alireza Arshadi Khamseh, Mohammad Mohammadi. A multi-objective integrated model for closed-loop supply chain configuration and supplier selection considering uncertain demand and different performance levels. Journal of Industrial and Management Optimization, 2017, 13 (2) : 1041-1064. doi: 10.3934/jimo.2016061

[2]

Xia Zhao, Jianping Dou. Bi-objective integrated supply chain design with transportation choices: A multi-objective particle swarm optimization. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1263-1288. doi: 10.3934/jimo.2018095

[3]

Maedeh Agahgolnezhad Gerdrodbari, Fatemeh Harsej, Mahboubeh Sadeghpour, Mohammad Molani Aghdam. A robust multi-objective model for managing the distribution of perishable products within a green closed-loop supply chain. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021107

[4]

Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial and Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130

[5]

Azam Moradi, Jafar Razmi, Reza Babazadeh, Ali Sabbaghnia. An integrated Principal Component Analysis and multi-objective mathematical programming approach to agile supply chain network design under uncertainty. Journal of Industrial and Management Optimization, 2019, 15 (2) : 855-879. doi: 10.3934/jimo.2018074

[6]

Jian Xiong, Zhongbao Zhou, Ke Tian, Tianjun Liao, Jianmai Shi. A multi-objective approach for weapon selection and planning problems in dynamic environments. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1189-1211. doi: 10.3934/jimo.2016068

[7]

Zhongqiang Wu, Zongkui Xie. A multi-objective lion swarm optimization based on multi-agent. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022001

[8]

Yuan-mei Xia, Xin-min Yang, Ke-quan Zhao. A combined scalarization method for multi-objective optimization problems. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2669-2683. doi: 10.3934/jimo.2020088

[9]

Shungen Luo, Xiuping Guo. Multi-objective optimization of multi-microgrid power dispatch under uncertainties using interval optimization. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021208

[10]

Kar Hung Wong, Yu Chung Eugene Lee, Heung Wing Joseph Lee, Chi Kin Chan. Optimal production schedule in a single-supplier multi-manufacturer supply chain involving time delays in both levels. Journal of Industrial and Management Optimization, 2018, 14 (3) : 877-894. doi: 10.3934/jimo.2017080

[11]

Han Yang, Jia Yue, Nan-jing Huang. Multi-objective robust cross-market mixed portfolio optimization under hierarchical risk integration. Journal of Industrial and Management Optimization, 2020, 16 (2) : 759-775. doi: 10.3934/jimo.2018177

[12]

Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial and Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009

[13]

Min Zhang, Gang Li. Multi-objective optimization algorithm based on improved particle swarm in cloud computing environment. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1413-1426. doi: 10.3934/dcdss.2019097

[14]

Liwei Zhang, Jihong Zhang, Yule Zhang. Second-order optimality conditions for cone constrained multi-objective optimization. Journal of Industrial and Management Optimization, 2018, 14 (3) : 1041-1054. doi: 10.3934/jimo.2017089

[15]

Danthai Thongphiew, Vira Chankong, Fang-Fang Yin, Q. Jackie Wu. An on-line adaptive radiation therapy system for intensity modulated radiation therapy: An application of multi-objective optimization. Journal of Industrial and Management Optimization, 2008, 4 (3) : 453-475. doi: 10.3934/jimo.2008.4.453

[16]

Yu Chen, Yonggang Li, Bei Sun, Chunhua Yang, Hongqiu Zhu. Multi-objective chance-constrained blending optimization of zinc smelter under stochastic uncertainty. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021169

[17]

Xiliang Sun, Wanjie Hu, Xiaolong Xue, Jianjun Dong. Multi-objective optimization model for planning metro-based underground logistics system network: Nanjing case study. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021179

[18]

Shoufeng Ji, Jinhuan Tang, Minghe Sun, Rongjuan Luo. Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1949-1977. doi: 10.3934/jimo.2021051

[19]

Tone-Yau Huang, Tamaki Tanaka. Optimality and duality for complex multi-objective programming. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 121-134. doi: 10.3934/naco.2021055

[20]

Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial and Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (343)
  • HTML views (746)
  • Cited by (0)

Other articles
by authors

[Back to Top]