
-
Previous Article
Analysis of a batch arrival retrial queue with impatient customers subject to the server disasters
- JIMO Home
- This Issue
-
Next Article
Effect of warranty and quantity discounts on a deteriorating production system with a Markovian production process and allowable shortages
A reformulation-linearization based algorithm for the smallest enclosing circle problem
School of Mathematical Sciences and VC/VR Key Lab, Sichuan Normal University, Chengdu, Sichuan 610066, China |
In this paper, an effective algorithm based on the reformulation-linearization technique (RLT) is developed to solve the smallest enclosing circle problem. Extensive computational experiments demonstrate that the algorithm based on the RLT outperforms the existing algorithms in terms of the solution time and quality in average.
References:
[1] |
C. Audet, P. Hansen, B. Jaumard and G. Savard,
A branch and cut algorithm for nonconvex quadratically constrained quadratic programming, Math. Program., 87 (2000), 131-152.
doi: 10.1007/s101079900106. |
[2] |
M. de Berg, O. Cheong, M. van Kreveld and M. Overmars, Computational Geometry: Algorithms and Applications, Springer, Berlin, Heidelberg, 2008.
doi: 10.1007/978-3-540-77974-2. |
[3] |
P. Chrystal,
On the problem to construct the minimum circle enclosing n given points in a plane, Proceedings of the Edinburgh Mathematical Society, 3 (1884), 30-33.
doi: 10.1017/S0013091500037238. |
[4] |
D. W. Hearn and J. Vijay,
Efficient algorithms for the (weighted) minimum circle problem, Oper. Res., 30 (1982), 777-795.
doi: 10.1287/opre.30.4.777. |
[5] |
Y. Jiang, C. Luo and S. G. Ling,
An efficient cutting plane algorithm for the smallest enclosing circle problem, J. Ind. Manag. Optim., 13 (2017), 147-153.
doi: 10.3934/jimo.2016009. |
[6] |
H. D. Sherali and C. H. Tuncbilek,
Global optimization algorithm for polynomial programming using a reformulation-linearization technique, J. Global Optim., 2 (1992), 101-112.
doi: 10.1007/BF00121304. |
[7] |
H. D. Sherali and C. H. Tuncbilek, Reformulation-convexification approach for solving nonconvex quadratic programming problems, J. Global Optim., 7 (1995), 1-31.
doi: 10.1007/BF01100203. |
[8] |
H. D. Sherali and C. H. Tuncbilek,
Comparison of two reformulation-linearization technique based linear programming relaxations for polynomial programming problems, J. Global Optim., 10 (1997), 381-390.
doi: 10.1023/A:1008237515535. |
[9] |
S. H. Pan and X. S. Li,
An efficient algorithm for the smallest enclosing ball problem in high dimension, Appl. Math. Comput., 172 (2006), 49-61.
doi: 10.1016/j.amc.2005.01.127. |
[10] |
S. Skyum,
A simple algorithm for computing the smallest enclosing circle, Inform. Process. Lett., 37 (1991), 121-125.
doi: 10.1016/0020-0190(91)90030-L. |
[11] |
J. Sturm, Using SeDuMi 1.02, A MATLAB toolbox for optimization over symmetric cones. Interior point methods, Optim. Methods Softw. 11/12 (1999), 625-653.
doi: 10.1080/10556789908805766. |
[12] |
J. J. Sylvester, A question in the geometry of situation, Quart. J. Math., 1 (1857), 79. Google Scholar |
[13] |
E. Welzl, Smallest enclosing disks (balls and ellipsoids), in New Results and New Trends in Computer Science, Springer, Berlin, 1991,359-370.
doi: 10.1007/BFb0038202. |
[14] |
S. Xu, R. Freund and J. Sun,
Solution methodologies for the smallest enclosing circle problem, Comput. Optim. Appl., 25 (2003), 283-292.
doi: 10.1023/A:1022977709811. |
[15] |
E. A. Yildirim,
Two algorithms for the minimum enclosing ball problem, SIAM J. Optim., 19 (2008), 1368-1391.
doi: 10.1137/070690419. |
[16] |
G. Zhou, K. C. Tohemail and J. Sun,
Efficient algorithms for the smallest enclosing ball problem, Comput. Optim. Appl., 30 (2005), 147-160.
doi: 10.1007/s10589-005-4565-7. |
show all references
References:
[1] |
C. Audet, P. Hansen, B. Jaumard and G. Savard,
A branch and cut algorithm for nonconvex quadratically constrained quadratic programming, Math. Program., 87 (2000), 131-152.
doi: 10.1007/s101079900106. |
[2] |
M. de Berg, O. Cheong, M. van Kreveld and M. Overmars, Computational Geometry: Algorithms and Applications, Springer, Berlin, Heidelberg, 2008.
doi: 10.1007/978-3-540-77974-2. |
[3] |
P. Chrystal,
On the problem to construct the minimum circle enclosing n given points in a plane, Proceedings of the Edinburgh Mathematical Society, 3 (1884), 30-33.
doi: 10.1017/S0013091500037238. |
[4] |
D. W. Hearn and J. Vijay,
Efficient algorithms for the (weighted) minimum circle problem, Oper. Res., 30 (1982), 777-795.
doi: 10.1287/opre.30.4.777. |
[5] |
Y. Jiang, C. Luo and S. G. Ling,
An efficient cutting plane algorithm for the smallest enclosing circle problem, J. Ind. Manag. Optim., 13 (2017), 147-153.
doi: 10.3934/jimo.2016009. |
[6] |
H. D. Sherali and C. H. Tuncbilek,
Global optimization algorithm for polynomial programming using a reformulation-linearization technique, J. Global Optim., 2 (1992), 101-112.
doi: 10.1007/BF00121304. |
[7] |
H. D. Sherali and C. H. Tuncbilek, Reformulation-convexification approach for solving nonconvex quadratic programming problems, J. Global Optim., 7 (1995), 1-31.
doi: 10.1007/BF01100203. |
[8] |
H. D. Sherali and C. H. Tuncbilek,
Comparison of two reformulation-linearization technique based linear programming relaxations for polynomial programming problems, J. Global Optim., 10 (1997), 381-390.
doi: 10.1023/A:1008237515535. |
[9] |
S. H. Pan and X. S. Li,
An efficient algorithm for the smallest enclosing ball problem in high dimension, Appl. Math. Comput., 172 (2006), 49-61.
doi: 10.1016/j.amc.2005.01.127. |
[10] |
S. Skyum,
A simple algorithm for computing the smallest enclosing circle, Inform. Process. Lett., 37 (1991), 121-125.
doi: 10.1016/0020-0190(91)90030-L. |
[11] |
J. Sturm, Using SeDuMi 1.02, A MATLAB toolbox for optimization over symmetric cones. Interior point methods, Optim. Methods Softw. 11/12 (1999), 625-653.
doi: 10.1080/10556789908805766. |
[12] |
J. J. Sylvester, A question in the geometry of situation, Quart. J. Math., 1 (1857), 79. Google Scholar |
[13] |
E. Welzl, Smallest enclosing disks (balls and ellipsoids), in New Results and New Trends in Computer Science, Springer, Berlin, 1991,359-370.
doi: 10.1007/BFb0038202. |
[14] |
S. Xu, R. Freund and J. Sun,
Solution methodologies for the smallest enclosing circle problem, Comput. Optim. Appl., 25 (2003), 283-292.
doi: 10.1023/A:1022977709811. |
[15] |
E. A. Yildirim,
Two algorithms for the minimum enclosing ball problem, SIAM J. Optim., 19 (2008), 1368-1391.
doi: 10.1137/070690419. |
[16] |
G. Zhou, K. C. Tohemail and J. Sun,
Efficient algorithms for the smallest enclosing ball problem, Comput. Optim. Appl., 30 (2005), 147-160.
doi: 10.1007/s10589-005-4565-7. |



k | R | (x, y) | Time | |||
22.39739458 | (-0.23034495, 1.54096380) | 1256 | ||||
22.45136334 | (-0.22954489, 1.54016746) | 4437 | ||||
22.45378444 | (-0.22950900, 1.54013173) | 4705 | ||||
22.45382627 | (-0.22950838, 1.54013111) | 4817 |
k | R | (x, y) | Time | |||
22.39739458 | (-0.23034495, 1.54096380) | 1256 | ||||
22.45136334 | (-0.22954489, 1.54016746) | 4437 | ||||
22.45378444 | (-0.22950900, 1.54013173) | 4705 | ||||
22.45382627 | (-0.22950838, 1.54013111) | 4817 |
Problem | Iteration | |||
m | Average | Maximum | Minimum | |
4.48 | 6 | 4 | ||
4.12 | 5 | 3 | ||
3.78 | 4 | 3 | ||
3.70 | 4 | 3 |
Problem | Iteration | |||
m | Average | Maximum | Minimum | |
4.48 | 6 | 4 | ||
4.12 | 5 | 3 | ||
3.78 | 4 | 3 | ||
3.70 | 4 | 3 |
Problem | SOCP | CP | SDPT3 | Algorithm Ⅰ | ||||||||
m | Obj Value | Time | Obj Value | Time | Obj Value | Time | Obj Value | Time | ||||
9.13411 | 128.98 | 9.13411 | 125.80 | 9.13411 | 1744.45 | 9.13411 | 66.50 | |||||
15.05421 | 179.80 | 15.05421 | 165.26 | 15.05421 | 6848.30 | 15.05421 | 70.60 | |||||
18.31612 | 781.82 | 18.31612 | 918.92 | 18.31612 | 65688.71 | 18.31612 | 530.66 | |||||
21.21799 | 25641.96 | 21.21799 | 15716.18 | 21.21799 | 1548266.51 | 21.21799 | 5052.26 |
Problem | SOCP | CP | SDPT3 | Algorithm Ⅰ | ||||||||
m | Obj Value | Time | Obj Value | Time | Obj Value | Time | Obj Value | Time | ||||
9.13411 | 128.98 | 9.13411 | 125.80 | 9.13411 | 1744.45 | 9.13411 | 66.50 | |||||
15.05421 | 179.80 | 15.05421 | 165.26 | 15.05421 | 6848.30 | 15.05421 | 70.60 | |||||
18.31612 | 781.82 | 18.31612 | 918.92 | 18.31612 | 65688.71 | 18.31612 | 530.66 | |||||
21.21799 | 25641.96 | 21.21799 | 15716.18 | 21.21799 | 1548266.51 | 21.21799 | 5052.26 |
k | R | (x, y, z) | Time | |||
21.18238030 | (-0.41033399, 0.50362615, -1.77470296) | 2682 | ||||
21.25471838 | (-0.40932025, 0.50524350, -1.77617447) | 4658 | ||||
21.25805248 | (-0.40927352, 0.50531805, -1.77624230) | 6623 | ||||
21.25808485 | (-0.40927307, 0.50531877, -1.77624296) | 10525 | ||||
21.25808512 | (-0.40927306, 0.50531878, -1.77624296) | 14668 |
k | R | (x, y, z) | Time | |||
21.18238030 | (-0.41033399, 0.50362615, -1.77470296) | 2682 | ||||
21.25471838 | (-0.40932025, 0.50524350, -1.77617447) | 4658 | ||||
21.25805248 | (-0.40927352, 0.50531805, -1.77624230) | 6623 | ||||
21.25808485 | (-0.40927307, 0.50531877, -1.77624296) | 10525 | ||||
21.25808512 | (-0.40927306, 0.50531878, -1.77624296) | 14668 |
Problem | Iteration | |||
m | Average | Maximum | Minimum | |
8.96 | 13 | 5 | ||
6.54 | 11 | 4 | ||
6.68 | 12 | 4 | ||
5.84 | 10 | 4 |
Problem | Iteration | |||
m | Average | Maximum | Minimum | |
8.96 | 13 | 5 | ||
6.54 | 11 | 4 | ||
6.68 | 12 | 4 | ||
5.84 | 10 | 4 |
Problem | SOCP | CP | SDPT3 | Algorithm 1 | ||||||||
m | Obj Value | Time | Obj Value | Time | Obj Value | Time | Obj Value | Time | ||||
10.20133 | 131.26 | 10.20133 | 138.96 | 10.20133 | 1589.39 | 10.20133 | 120.92 | |||||
13.90667 | 168.56 | 13.90667 | 251.66 | 13.90667 | 5157.42 | 13.90667 | 123.88 | |||||
16.47548 | 633.00 | 16.47548 | 1694.06 | 16.47548 | 43022.79 | 16.47548 | 161.02 | |||||
20.54257 | 16953.74 | 20.54257 | 18185.18 | 20.54257 | 907801.50 | 20.54257 | 1462.04 |
Problem | SOCP | CP | SDPT3 | Algorithm 1 | ||||||||
m | Obj Value | Time | Obj Value | Time | Obj Value | Time | Obj Value | Time | ||||
10.20133 | 131.26 | 10.20133 | 138.96 | 10.20133 | 1589.39 | 10.20133 | 120.92 | |||||
13.90667 | 168.56 | 13.90667 | 251.66 | 13.90667 | 5157.42 | 13.90667 | 123.88 | |||||
16.47548 | 633.00 | 16.47548 | 1694.06 | 16.47548 | 43022.79 | 16.47548 | 161.02 | |||||
20.54257 | 16953.74 | 20.54257 | 18185.18 | 20.54257 | 907801.50 | 20.54257 | 1462.04 |
[1] |
Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020 doi: 10.3934/jdg.2021001 |
[2] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[3] |
Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020054 |
[4] |
Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102 |
[5] |
Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021012 |
[6] |
Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2021, 17 (2) : 827-839. doi: 10.3934/jimo.2019136 |
[7] |
Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021013 |
[8] |
Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020377 |
[9] |
Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020164 |
[10] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
[11] |
Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020103 |
[12] |
Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 |
[13] |
Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051 |
[14] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[15] |
Wen Huang, Jianya Liu, Ke Wang. Möbius disjointness for skew products on a circle and a nilmanifold. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021006 |
[16] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
[17] |
Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85 |
[18] |
Makram Hamouda, Ahmed Bchatnia, Mohamed Ali Ayadi. Numerical solutions for a Timoshenko-type system with thermoelasticity with second sound. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021001 |
[19] |
François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221 |
[20] |
Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435 |
2019 Impact Factor: 1.366
Tools
Article outline
Figures and Tables
[Back to Top]