• Previous Article
    Incentive contract design for supplier switching with considering learning effect
  • JIMO Home
  • This Issue
  • Next Article
    Design of differentiated warranty coverage that considers usage rate and service option of consumers under 2D warranty policy
doi: 10.3934/jimo.2020141

Statistical mechanics approach for steady-state analysis in M/M/s queueing system with balking

1. 

Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan

2. 

Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan

* Corresponding author: Ikuo Arizono

Received  January 2020 Revised  June 2020 Published  September 2020

Fund Project: The authors are supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 18K04611: "Evaluation of system performance and reliability under incomplete information environment"

Behavior that a customer who has just arrived at a crowded queueing system leaves without joining the queue is known as the phenomenon of balking. Queueing systems with balking have been studied continually as one of significant subjects. In this paper, the theoretical approach for the steady-state analysis of the Markovian queueing systems with balking is considered based on the concept of the statistical mechanics. Here, it can be easily seen that the strength of balking is not constant but various in each queueing systems. Note that the strength of balking means how degree a customer who has just arrived at a crowded queueing system leaves without joining the queue. In our approach, under considering the difference of the strength of balking for each queueing systems, we have proposed a statistical mechanics model for analyzing the M/M/$ s $ queueing system with balking by introducing a parameter influencing the strength of balking. Further, we define a procedure for estimating the model parameter influencing the strength of balking. In addition, we consider a method of improving the performance of the M/M/$ s $ queueing system with balking by utilizing the statistical mechanics approach.

Citation: Ikuo Arizono, Yasuhiko Takemoto. Statistical mechanics approach for steady-state analysis in M/M/s queueing system with balking. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020141
References:
[1]

M. O. Abou-El-Ata and A. M. A. Hariri, The M/M/c/N queue with balking and reneging, Computers & Operations Research, 19 (1992), 713-716.  doi: 10.1016/0305-0548(92)90010-3.  Google Scholar

[2]

I. ArizonoY. Cui and H. Ohta, An analysis of M/M/$ s $ queueing systems based on the maximum entropy principle, Journal of the Operational Research Society, 42 (1991), 69-73.  doi: 10.1057/jors.1991.8.  Google Scholar

[3] D. Chandler, Introduction to Modern Statistical Mechanics, Oxford University Press, Oxford, England, UK, 1987.   Google Scholar
[4]

C. ChenZ. Jia and P. Varaiya, Causes and cures of highway congestion, IEEE Control Systems Magazine, 21 (2001), 26-32.  doi: 10.1109/37.969132.  Google Scholar

[5]

A. A. El-Sherbiny, The truncated heterogeneous two-server queue: M/M/2/N with reneging and general balk function, International Journal of Mathematical Archive, 3 (2012), 2745-2754.   Google Scholar

[6]

W. Greiner, L. Neise and H. St{ö}cker, Thermodynamics and Statistical Mechanics, Springer-Verlag, New York, 1995. Google Scholar

[7]

N. K. JainR. Kumar and B. Kumar Som, An M/M/1/N queuing system with reverse balking, American Journal of Operational Research, 4 (2014), 17-20.   Google Scholar

[8]

A. Montazer-HaghighiJ. Medhi and S. G. Mohanty, On a multiserver Markovian queueing system with balking and reneging, Computers & Operations Research, 13 (1986), 421-425.  doi: 10.1016/0305-0548(86)90029-8.  Google Scholar

[9]

B. Natvig, On the transient state probabilities for a queueing model where potential customers are discouraged by queue length, Journal of Applied Probability, 11 (1974), 345-354.  doi: 10.2307/3212755.  Google Scholar

[10] C. Preston, Gibbs States on Countable Sets, Cambridge University Press, London, England, UK, 1974.   Google Scholar
[11]

J. Sztrik, Basic Queueing Theory, Faculty of Informatics, University of Debrecen, Hungary, 2012. Google Scholar

show all references

References:
[1]

M. O. Abou-El-Ata and A. M. A. Hariri, The M/M/c/N queue with balking and reneging, Computers & Operations Research, 19 (1992), 713-716.  doi: 10.1016/0305-0548(92)90010-3.  Google Scholar

[2]

I. ArizonoY. Cui and H. Ohta, An analysis of M/M/$ s $ queueing systems based on the maximum entropy principle, Journal of the Operational Research Society, 42 (1991), 69-73.  doi: 10.1057/jors.1991.8.  Google Scholar

[3] D. Chandler, Introduction to Modern Statistical Mechanics, Oxford University Press, Oxford, England, UK, 1987.   Google Scholar
[4]

C. ChenZ. Jia and P. Varaiya, Causes and cures of highway congestion, IEEE Control Systems Magazine, 21 (2001), 26-32.  doi: 10.1109/37.969132.  Google Scholar

[5]

A. A. El-Sherbiny, The truncated heterogeneous two-server queue: M/M/2/N with reneging and general balk function, International Journal of Mathematical Archive, 3 (2012), 2745-2754.   Google Scholar

[6]

W. Greiner, L. Neise and H. St{ö}cker, Thermodynamics and Statistical Mechanics, Springer-Verlag, New York, 1995. Google Scholar

[7]

N. K. JainR. Kumar and B. Kumar Som, An M/M/1/N queuing system with reverse balking, American Journal of Operational Research, 4 (2014), 17-20.   Google Scholar

[8]

A. Montazer-HaghighiJ. Medhi and S. G. Mohanty, On a multiserver Markovian queueing system with balking and reneging, Computers & Operations Research, 13 (1986), 421-425.  doi: 10.1016/0305-0548(86)90029-8.  Google Scholar

[9]

B. Natvig, On the transient state probabilities for a queueing model where potential customers are discouraged by queue length, Journal of Applied Probability, 11 (1974), 345-354.  doi: 10.2307/3212755.  Google Scholar

[10] C. Preston, Gibbs States on Countable Sets, Cambridge University Press, London, England, UK, 1974.   Google Scholar
[11]

J. Sztrik, Basic Queueing Theory, Faculty of Informatics, University of Debrecen, Hungary, 2012. Google Scholar

Figure 1.  The relationships between the number of customers $ n $ and the arrival rate $ \lambda_{n} $ in the case of $ s = 1 $
Figure 2.  The steady-state probability distributions in the case of $ s = 1 $ and $ r = 0.5 $
Figure 3.  The relationships between the number of customers $ n $ and the arrival rate $ \lambda_{n} $ in the case of $ s = 3 $
Figure 4.  The steady-state probability distributions in the case of $ s = 3 $ and $ r = 0.5 $
Figure 5.  The relationship between the cost $ c $ and the profit $ T $
Table 1.  The arrival rate $ \lambda_{n} $ against various $ r $ in the case of $ s = 1 $
$ n $ $ r = 0.00 $ $ r = 0.25 $ $ r = 0.50 $ $ r=0.75 $ $ r = 1.00 $ $ r = 1.25 $
$ 0 $ 20.00 20.00 20.00 20.00 20.00 20.00
$ 1 $ 20.00 16.82 14.14 11.89 10.00 8.41
$ 2 $ 20.00 15.20 11.55 8.77 6.67 5.07
$ 3 $ 20.00 14.14 10.00 7.07 5.00 3.54
$ 4 $ 20.00 13.37 8.94 5.98 4.00 2.67
$ 5 $ 20.00 12.78 8.16 5.22 3.33 2.13
$ 6 $ 20.00 12.30 7.56 4.65 2.86 1.76
$ 7 $ 20.00 11.89 7.07 4.20 2.50 1.49
$ 8 $ 20.00 11.55 6.67 3.85 2.22 1.28
$ 9 $ 20.00 11.25 6.32 3.56 2.00 1.12
$ 10 $ 20.00 10.98 6.03 3.31 1.82 1.00
$ n $ $ r = 0.00 $ $ r = 0.25 $ $ r = 0.50 $ $ r=0.75 $ $ r = 1.00 $ $ r = 1.25 $
$ 0 $ 20.00 20.00 20.00 20.00 20.00 20.00
$ 1 $ 20.00 16.82 14.14 11.89 10.00 8.41
$ 2 $ 20.00 15.20 11.55 8.77 6.67 5.07
$ 3 $ 20.00 14.14 10.00 7.07 5.00 3.54
$ 4 $ 20.00 13.37 8.94 5.98 4.00 2.67
$ 5 $ 20.00 12.78 8.16 5.22 3.33 2.13
$ 6 $ 20.00 12.30 7.56 4.65 2.86 1.76
$ 7 $ 20.00 11.89 7.07 4.20 2.50 1.49
$ 8 $ 20.00 11.55 6.67 3.85 2.22 1.28
$ 9 $ 20.00 11.25 6.32 3.56 2.00 1.12
$ 10 $ 20.00 10.98 6.03 3.31 1.82 1.00
Table 2.  The steady-state probability $ P_{n} $ under some $ \rho $ in the case of $ s = 1 $
$ n $ $ \rho = 0.8 $ $ \rho = 1.0 $ $ \rho = 1.2 $
$ 0 $ 0.386257 0.288225 0.209605
$ 1 $ 0.309006 0.288225 0.251526
$ 2 $ 0.174800 0.203806 0.213427
$ 3 $ 0.080737 0.117668 0.147867
$ 4 $ 0.032295 0.058834 0.088720
$ 5 $ 0.011554 0.026311 0.047612
$ 6 $ 0.003774 0.010742 0.023325
$ 7 $ 0.001141 0.004060 0.010579
$ 8 $ 0.000323 0.001435 0.004488
$ 9 $ 0.000086 0.000478 0.001795
$ 10 $ 0.000022 0.000151 0.000681
$ n $ $ \rho = 0.8 $ $ \rho = 1.0 $ $ \rho = 1.2 $
$ 0 $ 0.386257 0.288225 0.209605
$ 1 $ 0.309006 0.288225 0.251526
$ 2 $ 0.174800 0.203806 0.213427
$ 3 $ 0.080737 0.117668 0.147867
$ 4 $ 0.032295 0.058834 0.088720
$ 5 $ 0.011554 0.026311 0.047612
$ 6 $ 0.003774 0.010742 0.023325
$ 7 $ 0.001141 0.004060 0.010579
$ 8 $ 0.000323 0.001435 0.004488
$ 9 $ 0.000086 0.000478 0.001795
$ 10 $ 0.000022 0.000151 0.000681
Table 3.  The arrival rate $ \lambda_{n} $ against various $ r $ in the case of $ s = 3 $
$ n $ $ r = 0.00 $ $ r = 0.25 $ $ r = 0.50 $ $ r=0.75 $ $ r = 1.00 $ $ r = 1.25 $
$ 0 $ 20.00 20.00 20.00 20.00 20.00 20.00
$ 1 $ 20.00 20.00 20.00 20.00 20.00 20.00
$ 2 $ 20.00 20.00 20.00 20.00 20.00 20.00
$ 3 $ 20.00 16.82 14.14 11.89 10.00 8.41
$ 4 $ 20.00 15.20 11.55 8.77 6.67 5.07
$ 5 $ 20.00 14.14 10.00 7.07 5.00 3.54
$ 6 $ 20.00 13.37 8.94 5.98 4.00 2.67
$ 7 $ 20.00 12.78 8.16 5.22 3.33 2.13
$ 8 $ 20.00 12.30 7.56 4.65 2.86 1.76
$ 9 $ 20.00 11.89 7.07 4.20 2.50 1.49
$ 10 $ 20.00 11.55 6.67 3.85 2.22 1.28
$ n $ $ r = 0.00 $ $ r = 0.25 $ $ r = 0.50 $ $ r=0.75 $ $ r = 1.00 $ $ r = 1.25 $
$ 0 $ 20.00 20.00 20.00 20.00 20.00 20.00
$ 1 $ 20.00 20.00 20.00 20.00 20.00 20.00
$ 2 $ 20.00 20.00 20.00 20.00 20.00 20.00
$ 3 $ 20.00 16.82 14.14 11.89 10.00 8.41
$ 4 $ 20.00 15.20 11.55 8.77 6.67 5.07
$ 5 $ 20.00 14.14 10.00 7.07 5.00 3.54
$ 6 $ 20.00 13.37 8.94 5.98 4.00 2.67
$ 7 $ 20.00 12.78 8.16 5.22 3.33 2.13
$ 8 $ 20.00 12.30 7.56 4.65 2.86 1.76
$ 9 $ 20.00 11.89 7.07 4.20 2.50 1.49
$ 10 $ 20.00 11.55 6.67 3.85 2.22 1.28
Table 4.  The steady-state probability $ P_{n} $ under some $ \rho $ in the case of $ s = 3 $
$ n $ $ \rho = 0.8 $ $ \rho = 1.0 $ $ \rho = 1.2 $
$ 0 $ 0.092113 0.050987 0.028157
$ 1 $ 0.221072 0.152961 0.101365
$ 2 $ 0.265287 0.229442 0.182457
$ 3 $ 0.212229 0.229442 0.218948
$ 4 $ 0.120055 0.162240 0.185784
$ 5 $ 0.055451 0.093669 0.128715
$ 6 $ 0.022180 0.046835 0.077229
$ 7 $ 0.007936 0.020945 0.041445
$ 8 $ 0.002592 0.008551 0.020304
$ 9 $ 0.000784 0.003232 0.009209
$ 10 $ 0.000222 0.001143 0.003907
$ n $ $ \rho = 0.8 $ $ \rho = 1.0 $ $ \rho = 1.2 $
$ 0 $ 0.092113 0.050987 0.028157
$ 1 $ 0.221072 0.152961 0.101365
$ 2 $ 0.265287 0.229442 0.182457
$ 3 $ 0.212229 0.229442 0.218948
$ 4 $ 0.120055 0.162240 0.185784
$ 5 $ 0.055451 0.093669 0.128715
$ 6 $ 0.022180 0.046835 0.077229
$ 7 $ 0.007936 0.020945 0.041445
$ 8 $ 0.002592 0.008551 0.020304
$ 9 $ 0.000784 0.003232 0.009209
$ 10 $ 0.000222 0.001143 0.003907
Table 5.  An example of the estimation as $ r^{\ast} = 0.76 $
$ n $ $ P_{n}^† $ $ P_{n}^{‡} $ $ P_{n}^{\ast} $
$ 0 $ 0.044992 0.053333 0.045067
$ 1 $ 0.143973 0.156667 0.144213
$ 2 $ 0.230357 0.210000 0.230741
$ 3 $ 0.245715 0.246667 0.246123
$ 4 $ 0.196572 0.200000 0.196899
$ 5 $ 0.093506 0.086667 0.093014
$ 6 $ 0.032816 0.036667 0.032287
$ 7 $ 0.009282 0.006667 0.009006
$ 8 $ or more 0.002787 0.003333 0.002650
$ n $ $ P_{n}^† $ $ P_{n}^{‡} $ $ P_{n}^{\ast} $
$ 0 $ 0.044992 0.053333 0.045067
$ 1 $ 0.143973 0.156667 0.144213
$ 2 $ 0.230357 0.210000 0.230741
$ 3 $ 0.245715 0.246667 0.246123
$ 4 $ 0.196572 0.200000 0.196899
$ 5 $ 0.093506 0.086667 0.093014
$ 6 $ 0.032816 0.036667 0.032287
$ 7 $ 0.009282 0.006667 0.009006
$ 8 $ or more 0.002787 0.003333 0.002650
Table 6.  The estimated results of $ r^{\ast} $
0.76 0.60 0.70 0.76 0.97
0.94 0.77 0.79 0.80 0.64
0.76 0.73 0.65 0.64 0.66
0.66 0.76 0.66 0.76 0.61
0.80 0.84 0.86 0.75 0.77
0.94 0.65 0.72 0.91 0.76
0.79 0.82 0.76 0.93 0.88
0.70 0.83 0.76 0.75 0.74
0.57 0.75 0.86 0.58 0.61
0.73 0.75 0.67 0.68 0.68
0.73 0.93 0.61 0.84 0.79
0.63 0.72 0.77 1.05 0.59
0.72 0.80 0.74 0.70 0.81
0.93 0.84 0.77 0.64 0.97
0.83 0.65 0.70 0.72 0.92
0.76 0.73 0.84 0.80 0.86
0.66 0.73 0.75 0.69 0.74
0.64 0.78 0.88 0.89 0.70
0.69 0.52 0.71 0.75 0.86
0.83 0.59 0.62 0.74 0.65
0.76 0.60 0.70 0.76 0.97
0.94 0.77 0.79 0.80 0.64
0.76 0.73 0.65 0.64 0.66
0.66 0.76 0.66 0.76 0.61
0.80 0.84 0.86 0.75 0.77
0.94 0.65 0.72 0.91 0.76
0.79 0.82 0.76 0.93 0.88
0.70 0.83 0.76 0.75 0.74
0.57 0.75 0.86 0.58 0.61
0.73 0.75 0.67 0.68 0.68
0.73 0.93 0.61 0.84 0.79
0.63 0.72 0.77 1.05 0.59
0.72 0.80 0.74 0.70 0.81
0.93 0.84 0.77 0.64 0.97
0.83 0.65 0.70 0.72 0.92
0.76 0.73 0.84 0.80 0.86
0.66 0.73 0.75 0.69 0.74
0.64 0.78 0.88 0.89 0.70
0.69 0.52 0.71 0.75 0.86
0.83 0.59 0.62 0.74 0.65
Table 7.  The basic statistics for $ r^{\ast} $ in Table \ref{Table 2}
average 0.7527
standard deviation 0.1021
average 0.7527
standard deviation 0.1021
Table 8.  The averages and standard deviations by the similar experiments
the number of observation 300 500 1000 10000
average 0.7527 0.7446 0.7477 0.7516
standard deviation 0.1021 0.0909 0.0466 0.0188
the number of observation 300 500 1000 10000
average 0.7527 0.7446 0.7477 0.7516
standard deviation 0.1021 0.0909 0.0466 0.0188
Table 9.  The profit $ T $ and average arrival rate when increasing the number of servers
$ s $ $ T $ $ \bar{\lambda} $
$ 4 $ 1611.263 67.04209
$ 5 $ 1696.563 73.21876
$ 6 $ 1713.902 77.13008
$ 7 $ 1659.655 78.65517
$ 8 $ 1584.739 79.49130
$ 9 $ 1494.792 79.82639
$ s $ $ T $ $ \bar{\lambda} $
$ 4 $ 1611.263 67.04209
$ 5 $ 1696.563 73.21876
$ 6 $ 1713.902 77.13008
$ 7 $ 1659.655 78.65517
$ 8 $ 1584.739 79.49130
$ 9 $ 1494.792 79.82639
[1]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020123

[2]

Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096

[3]

Wen Huang, Jianya Liu, Ke Wang. Möbius disjointness for skew products on a circle and a nilmanifold. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021006

[4]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[5]

Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020127

[6]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

[7]

Saadoun Mahmoudi, Karim Samei. Codes over $ \frak m $-adic completion rings. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020122

[8]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[9]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[10]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020051

[11]

Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319

[12]

Bing Gao, Rui Gao. On fair entropy of the tent family. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021017

[13]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[14]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[15]

Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325

[16]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[17]

Hongfei Yang, Xiaofeng Ding, Raymond Chan, Hui Hu, Yaxin Peng, Tieyong Zeng. A new initialization method based on normed statistical spaces in deep networks. Inverse Problems & Imaging, 2021, 15 (1) : 147-158. doi: 10.3934/ipi.2020045

[18]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[19]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[20]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (38)
  • HTML views (140)
  • Cited by (0)

Other articles
by authors

[Back to Top]