• Previous Article
    Dynamic-programming-based heuristic for multi-objective operating theater planning
  • JIMO Home
  • This Issue
  • Next Article
    Optimal investment and proportional reinsurance strategy under the mean-reverting Ornstein-Uhlenbeck process and net profit condition
January  2022, 18(1): 95-110. doi: 10.3934/jimo.2020144

Performance analysis and optimization research of multi-channel cognitive radio networks with a dynamic channel vacation scheme

1. 

School of Science, Yanshan University, Qinhuangdao 066004, China

2. 

First Experimental Primary School of Tongzhou District, Beijing Academy of Educational Sciences, Beijing 101100, China

3. 

Department of Intelligence and Informatics, Konan University, Kobe 658-8501, Japan

4. 

The Kyoto College of Graduate Studies for Informatics, Kyoto 600-8216, Japan

*Corresponding author: Zhanyou Ma

Received  October 2018 Revised  July 2020 Published  January 2022 Early access  September 2020

In order to resolve the issues of channel scarcity and low channel utilization rates in cognitive radio networks (CRNs), some researchers have proposed the idea of "secondary utilization" for licensed channels. In "secondary utilization", secondary users (SUs) opportunistically take advantage of unused licensed channels, thus guaranteeing the transmission performance and quality of service (QoS) of the system. Based on the channel vacation scheme, we analyze a preemptive priority queueing system with multiple synchronization working vacations. Under this discipline, we build a three-dimensional Markov process for this queueing model. Through the analysis of performance measures, we obtain the average queueing length for the two types of users, the mean busy period and the channel utility. By analyzing several numerical experiments, we demonstrate the effect of the parameters on the performance measures. Finally, in order to optimize the system individually and socially, we establish utility functions and provide some optimization results for PUs and SUs.

Citation: Zhanyou Ma, Wenbo Wang, Wuyi Yue, Yutaka Takahashi. Performance analysis and optimization research of multi-channel cognitive radio networks with a dynamic channel vacation scheme. Journal of Industrial and Management Optimization, 2022, 18 (1) : 95-110. doi: 10.3934/jimo.2020144
References:
[1]

Y. ChenP. Liao and Y. Wang, A channel-hopping scheme for continuous rendezvous and data delivery in cognitive radio network, Peer-to-Peer Networking and Applications, 9 (2016), 16-27.  doi: 10.1007/s12083-014-0308-9.

[2]

L. Chouhan and A. Trivedi, Performance study of a CSMA based multi-user MAC protocol for cognitive radio networks: Analysis of channel utilization and opportunity perspective, Wireless Networks, 22 (2016), 33-47.  doi: 10.1007/s11276-015-0947-7.

[3]

S. JinX. Yao and Z. Ma, A novel spectrum allocation strategy with channel bonding and channel reservation, KSII Transactions on Internet and Information Systems, 9 (2015), 4034-4053.  doi: 10.3837/tiis.2015.10.015.

[4]

H. KatayamaH. MasuyamaS. Kasahara and Y. Takahashi, Effect of spectrum sensing overhead on performance for cognitive radio networks with channel bonding, Journal of Industrial and Management Optimization, 10 (2014), 21-40.  doi: 10.3934/jimo.2014.10.21.

[5]

P. KaurA. Khosla and M. Uddin, Markovian queuing model for dynamic spectrum allocation in centralized architecture for cognitive radios, IACSIT International Journal of Engineering and Technology, 3 (2011), 96-101.  doi: 10.7763/IJET.2011.V3.206.

[6]

K. Kim, T-preemptive priority queue and its application to the analysis of an opportunistic spectrum access in cognitive radio networks, Computers and Operations Research, 39 (2012), 1394-1401.  doi: 10.1016/j.cor.2011.08.008.

[7]

P. Kolodzy, Spectrum policy task force: Finding and recommendations, International Symposium on Advanced Radio Technologies, 96 (2003), 392-393. 

[8]

S. Lee and G. Hwang, A new analytical model for optimized cognitive radio networks based on stochastic geometry, Journal of Industrial and Management Optimization, 13 (2017), 1883-1899.  doi: 10.3934/jimo.2017023.

[9]

M. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach, The Johns Hopkins Universit Press, Baltimore, MD, 1981.

[10]

V. TumuluruP. Wang and D. Niyato, A novel spectrum-scheduling scheme for multi-channel cognitive radio network and performance analysis, IEEE Transactions on Vehicular Technology, 60 (2011), 1849-1858.  doi: 10.1109/TVT.2011.2114682.

[11]

W. Wang, Z. Ma, W. Yue and Y. Takahashi, Performance analysis of a dynamic channel vacation scheme in cognitive radio networks, In Proceedings of the 13th International Conference on Queueing Theory and Network Applications, (2018), 183-190. doi: 10.1007/978-3-319-93736-6_14.

[12]

K. WuW. WangH. LuoG. Yu and Z. Zhang, Optimal resource allocation for cognitive radio networks with imperfect spectrum sensing, 2010 IEEE 71st Vehicular Technology Conference, 9 (2010), 1-4.  doi: 10.1109/VETECS.2010.5493676.

[13]

H. YuW. Tang and S. Li, Joint optimal sensing time and power allocation for multi-channel cognitive radio networks considering sensing-channel selection, Science China Information Sciences, 57 (2014), 1-8.  doi: 10.1007/s11432-013-4813-x.

[14]

Y. ZhaoS. Jin and W. Yue, Performance optimization of a dynamic channel bonding strategy in cognitive radio networks, Pacific Journal of Optimization, 9 (2013), 679-696. 

[15]

Y. Zhao and W. Yue, Performance evaluation and optimization of cognitive radio networks with adjustable access control for multiple secondary users, Journal of Industrial and Management Optimization, 15 (2019), 1-14.  doi: 10.3934/jimo.2018029.

[16]

Y. Zhao and W. Yue, Cognitive radio networks with multiple secondary users under two kinds of priority schemes: Performance comparison and optimization, Journal of Industrial and Management Optimization, 13 (2017), 1475-1492.  doi: 10.3934/jimo.2017001.

show all references

References:
[1]

Y. ChenP. Liao and Y. Wang, A channel-hopping scheme for continuous rendezvous and data delivery in cognitive radio network, Peer-to-Peer Networking and Applications, 9 (2016), 16-27.  doi: 10.1007/s12083-014-0308-9.

[2]

L. Chouhan and A. Trivedi, Performance study of a CSMA based multi-user MAC protocol for cognitive radio networks: Analysis of channel utilization and opportunity perspective, Wireless Networks, 22 (2016), 33-47.  doi: 10.1007/s11276-015-0947-7.

[3]

S. JinX. Yao and Z. Ma, A novel spectrum allocation strategy with channel bonding and channel reservation, KSII Transactions on Internet and Information Systems, 9 (2015), 4034-4053.  doi: 10.3837/tiis.2015.10.015.

[4]

H. KatayamaH. MasuyamaS. Kasahara and Y. Takahashi, Effect of spectrum sensing overhead on performance for cognitive radio networks with channel bonding, Journal of Industrial and Management Optimization, 10 (2014), 21-40.  doi: 10.3934/jimo.2014.10.21.

[5]

P. KaurA. Khosla and M. Uddin, Markovian queuing model for dynamic spectrum allocation in centralized architecture for cognitive radios, IACSIT International Journal of Engineering and Technology, 3 (2011), 96-101.  doi: 10.7763/IJET.2011.V3.206.

[6]

K. Kim, T-preemptive priority queue and its application to the analysis of an opportunistic spectrum access in cognitive radio networks, Computers and Operations Research, 39 (2012), 1394-1401.  doi: 10.1016/j.cor.2011.08.008.

[7]

P. Kolodzy, Spectrum policy task force: Finding and recommendations, International Symposium on Advanced Radio Technologies, 96 (2003), 392-393. 

[8]

S. Lee and G. Hwang, A new analytical model for optimized cognitive radio networks based on stochastic geometry, Journal of Industrial and Management Optimization, 13 (2017), 1883-1899.  doi: 10.3934/jimo.2017023.

[9]

M. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach, The Johns Hopkins Universit Press, Baltimore, MD, 1981.

[10]

V. TumuluruP. Wang and D. Niyato, A novel spectrum-scheduling scheme for multi-channel cognitive radio network and performance analysis, IEEE Transactions on Vehicular Technology, 60 (2011), 1849-1858.  doi: 10.1109/TVT.2011.2114682.

[11]

W. Wang, Z. Ma, W. Yue and Y. Takahashi, Performance analysis of a dynamic channel vacation scheme in cognitive radio networks, In Proceedings of the 13th International Conference on Queueing Theory and Network Applications, (2018), 183-190. doi: 10.1007/978-3-319-93736-6_14.

[12]

K. WuW. WangH. LuoG. Yu and Z. Zhang, Optimal resource allocation for cognitive radio networks with imperfect spectrum sensing, 2010 IEEE 71st Vehicular Technology Conference, 9 (2010), 1-4.  doi: 10.1109/VETECS.2010.5493676.

[13]

H. YuW. Tang and S. Li, Joint optimal sensing time and power allocation for multi-channel cognitive radio networks considering sensing-channel selection, Science China Information Sciences, 57 (2014), 1-8.  doi: 10.1007/s11432-013-4813-x.

[14]

Y. ZhaoS. Jin and W. Yue, Performance optimization of a dynamic channel bonding strategy in cognitive radio networks, Pacific Journal of Optimization, 9 (2013), 679-696. 

[15]

Y. Zhao and W. Yue, Performance evaluation and optimization of cognitive radio networks with adjustable access control for multiple secondary users, Journal of Industrial and Management Optimization, 15 (2019), 1-14.  doi: 10.3934/jimo.2018029.

[16]

Y. Zhao and W. Yue, Cognitive radio networks with multiple secondary users under two kinds of priority schemes: Performance comparison and optimization, Journal of Industrial and Management Optimization, 13 (2017), 1475-1492.  doi: 10.3934/jimo.2017001.

Figure 1.  The dynamic channel vacation scheme proposed in this paper
Figure 2.  The running mode of the system
Figure 3.  The relation of $ E({L_1}) $ to $ {\mu _2} $ and $ c $
Figure 4.  The relation of $ E({L_2}) $ to $ {\mu _2} $ and $ \theta $
Figure 5.  The relation of $ {P_d} $ to $ {\lambda _2} $ and $ c $
Figure 6.  The relation of $ {P_b} $ to $ {\lambda _2} $ and $ c $
Figure 7.  The relation of $ {P_{wv}} $ to $ {\lambda _2} $ and $ c $
Figure 8.  The relation of $ {P_u} $ to $ {\mu _2} $ and $ c $
Figure 9.  The relation of $ {U_{I1}} $ to $ \mu_2 $ and $ \theta $
Figure 10.  The relation of $ {U_{I2}} $ to $ \mu_2 $ and $ \theta $
Figure 11.  The relation of $ {U_{s}} $ to $ {\lambda _2} $ and $ c $
Figure 12.  The relation of $ {U_{s}} $ to $ {\mu_2} $ and $ \theta $
Table 1.  The Relation of $ E(B) $ to $ {\lambda _2} $ and $ c $
$ c $ $ \lambda _2 =6 $ $ \lambda _2 =7 $ $ \lambda _2=8 $ $ \lambda _2=9 $ $ \lambda _2=10 $
3 0.4900 0.4983 0.5052 0.5109 0.5156
4 0.4678 0.4793 0.4891 0.4975 0.5046
5 0.4594 0.4731 0.4852 0.4957 0.5049
$ c $ $ \lambda _2 =6 $ $ \lambda _2 =7 $ $ \lambda _2=8 $ $ \lambda _2=9 $ $ \lambda _2=10 $
3 0.4900 0.4983 0.5052 0.5109 0.5156
4 0.4678 0.4793 0.4891 0.4975 0.5046
5 0.4594 0.4731 0.4852 0.4957 0.5049
[1]

Raina Raj, Vidyottama Jain. Optimization of traffic control in $ MMAP\mathit{[2]}/PH\mathit{[2]}/S$ priority queueing model with $ PH $ retrial times and the preemptive repeat policy. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022044

[2]

Hiroshi Matano, Yoichiro Mori. Global existence and uniqueness of a three-dimensional model of cellular electrophysiology. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1573-1636. doi: 10.3934/dcds.2011.29.1573

[3]

Xianmin Xu. Analysis for wetting on rough surfaces by a three-dimensional phase field model. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2839-2850. doi: 10.3934/dcdsb.2016075

[4]

Yunshyong Chow, Kenneth Palmer. On a discrete three-dimensional Leslie-Gower competition model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4367-4377. doi: 10.3934/dcdsb.2019123

[5]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5407-5419. doi: 10.3934/dcdsb.2020349

[6]

Oleg V. Kaptsov, Alexey V. Schmidt. Reduction of three-dimensional model of the far turbulent wake to one-dimensional problem. Conference Publications, 2011, 2011 (Special) : 794-802. doi: 10.3934/proc.2011.2011.794

[7]

Mário Bessa, Jorge Rocha. Three-dimensional conservative star flows are Anosov. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 839-846. doi: 10.3934/dcds.2010.26.839

[8]

B. M. Haines, Igor S. Aranson, Leonid Berlyand, Dmitry A. Karpeev. Effective viscosity of bacterial suspensions: a three-dimensional PDE model with stochastic torque. Communications on Pure and Applied Analysis, 2012, 11 (1) : 19-46. doi: 10.3934/cpaa.2012.11.19

[9]

Fang Qin, Ying Jiang, Ping Gu. Three-dimensional computer simulation of twill woven fabric by using polynomial mathematical model. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1167-1178. doi: 10.3934/dcdss.2019080

[10]

Biswajit Basu. On an exact solution of a nonlinear three-dimensional model in ocean flows with equatorial undercurrent and linear variation in density. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4783-4796. doi: 10.3934/dcds.2019195

[11]

Katerina Nik. On a free boundary model for three-dimensional MEMS with a hinged top plate II: Parabolic case. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3395-3417. doi: 10.3934/cpaa.2021110

[12]

Xue-Li Song, Yan-Ren Hou. Attractors for the three-dimensional incompressible Navier-Stokes equations with damping. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 239-252. doi: 10.3934/dcds.2011.31.239

[13]

Chuanxin Zhao, Lin Jiang, Kok Lay Teo. A hybrid chaos firefly algorithm for three-dimensional irregular packing problem. Journal of Industrial and Management Optimization, 2020, 16 (1) : 409-429. doi: 10.3934/jimo.2018160

[14]

Victor Isakov, Shingyu Leung, Jianliang Qian. A three-dimensional inverse gravimetry problem for ice with snow caps. Inverse Problems and Imaging, 2013, 7 (2) : 523-544. doi: 10.3934/ipi.2013.7.523

[15]

Lars Lamberg. Unique recovery of unknown projection orientations in three-dimensional tomography. Inverse Problems and Imaging, 2008, 2 (4) : 547-575. doi: 10.3934/ipi.2008.2.547

[16]

Yuming Qin, Yang Wang, Xing Su, Jianlin Zhang. Global existence of solutions for the three-dimensional Boussinesq system with anisotropic data. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1563-1581. doi: 10.3934/dcds.2016.36.1563

[17]

Hua Zhong, Xiao-Ping Wang, Shuyu Sun. A numerical study of three-dimensional droplets spreading on chemically patterned surfaces. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2905-2926. doi: 10.3934/dcdsb.2016079

[18]

Victoriano Carmona, Emilio Freire, Soledad Fernández-García. Periodic orbits and invariant cones in three-dimensional piecewise linear systems. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 59-72. doi: 10.3934/dcds.2015.35.59

[19]

Gen Nakamura, Päivi Ronkanen, Samuli Siltanen, Kazumi Tanuma. Recovering conductivity at the boundary in three-dimensional electrical impedance tomography. Inverse Problems and Imaging, 2011, 5 (2) : 485-510. doi: 10.3934/ipi.2011.5.485

[20]

Giuliano Lazzaroni, Mariapia Palombaro, Anja Schlömerkemper. Rigidity of three-dimensional lattices and dimension reduction in heterogeneous nanowires. Discrete and Continuous Dynamical Systems - S, 2017, 10 (1) : 119-139. doi: 10.3934/dcdss.2017007

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (332)
  • HTML views (560)
  • Cited by (0)

Other articles
by authors

[Back to Top]