• Previous Article
    Inverse single facility location problem on a tree with balancing on the distance of server to clients
  • JIMO Home
  • This Issue
  • Next Article
    Genetic algorithm for obstacle location-allocation problems with customer priorities
doi: 10.3934/jimo.2020144

Performance analysis and optimization research of multi-channel cognitive radio networks with a dynamic channel vacation scheme

1. 

School of Science, Yanshan University, Qinhuangdao 066004, China

2. 

First Experimental Primary School of Tongzhou District, Beijing Academy of Educational Sciences, Beijing 101100, China

3. 

Department of Intelligence and Informatics, Konan University, Kobe 658-8501, Japan

4. 

The Kyoto College of Graduate Studies for Informatics, Kyoto 600-8216, Japan

*Corresponding author: Zhanyou Ma

Received  October 2018 Revised  July 2020 Published  September 2020

In order to resolve the issues of channel scarcity and low channel utilization rates in cognitive radio networks (CRNs), some researchers have proposed the idea of "secondary utilization" for licensed channels. In "secondary utilization", secondary users (SUs) opportunistically take advantage of unused licensed channels, thus guaranteeing the transmission performance and quality of service (QoS) of the system. Based on the channel vacation scheme, we analyze a preemptive priority queueing system with multiple synchronization working vacations. Under this discipline, we build a three-dimensional Markov process for this queueing model. Through the analysis of performance measures, we obtain the average queueing length for the two types of users, the mean busy period and the channel utility. By analyzing several numerical experiments, we demonstrate the effect of the parameters on the performance measures. Finally, in order to optimize the system individually and socially, we establish utility functions and provide some optimization results for PUs and SUs.

Citation: Zhanyou Ma, Wenbo Wang, Wuyi Yue, Yutaka Takahashi. Performance analysis and optimization research of multi-channel cognitive radio networks with a dynamic channel vacation scheme. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020144
References:
[1]

Y. ChenP. Liao and Y. Wang, A channel-hopping scheme for continuous rendezvous and data delivery in cognitive radio network, Peer-to-Peer Networking and Applications, 9 (2016), 16-27.  doi: 10.1007/s12083-014-0308-9.  Google Scholar

[2]

L. Chouhan and A. Trivedi, Performance study of a CSMA based multi-user MAC protocol for cognitive radio networks: Analysis of channel utilization and opportunity perspective, Wireless Networks, 22 (2016), 33-47.  doi: 10.1007/s11276-015-0947-7.  Google Scholar

[3]

S. JinX. Yao and Z. Ma, A novel spectrum allocation strategy with channel bonding and channel reservation, KSII Transactions on Internet and Information Systems, 9 (2015), 4034-4053.  doi: 10.3837/tiis.2015.10.015.  Google Scholar

[4]

H. KatayamaH. MasuyamaS. Kasahara and Y. Takahashi, Effect of spectrum sensing overhead on performance for cognitive radio networks with channel bonding, Journal of Industrial and Management Optimization, 10 (2014), 21-40.  doi: 10.3934/jimo.2014.10.21.  Google Scholar

[5]

P. KaurA. Khosla and M. Uddin, Markovian queuing model for dynamic spectrum allocation in centralized architecture for cognitive radios, IACSIT International Journal of Engineering and Technology, 3 (2011), 96-101.  doi: 10.7763/IJET.2011.V3.206.  Google Scholar

[6]

K. Kim, T-preemptive priority queue and its application to the analysis of an opportunistic spectrum access in cognitive radio networks, Computers and Operations Research, 39 (2012), 1394-1401.  doi: 10.1016/j.cor.2011.08.008.  Google Scholar

[7]

P. Kolodzy, Spectrum policy task force: Finding and recommendations, International Symposium on Advanced Radio Technologies, 96 (2003), 392-393.   Google Scholar

[8]

S. Lee and G. Hwang, A new analytical model for optimized cognitive radio networks based on stochastic geometry, Journal of Industrial and Management Optimization, 13 (2017), 1883-1899.  doi: 10.3934/jimo.2017023.  Google Scholar

[9]

M. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach, The Johns Hopkins Universit Press, Baltimore, MD, 1981.  Google Scholar

[10]

V. TumuluruP. Wang and D. Niyato, A novel spectrum-scheduling scheme for multi-channel cognitive radio network and performance analysis, IEEE Transactions on Vehicular Technology, 60 (2011), 1849-1858.  doi: 10.1109/TVT.2011.2114682.  Google Scholar

[11]

W. Wang, Z. Ma, W. Yue and Y. Takahashi, Performance analysis of a dynamic channel vacation scheme in cognitive radio networks, In Proceedings of the 13th International Conference on Queueing Theory and Network Applications, (2018), 183-190. doi: 10.1007/978-3-319-93736-6_14.  Google Scholar

[12]

K. WuW. WangH. LuoG. Yu and Z. Zhang, Optimal resource allocation for cognitive radio networks with imperfect spectrum sensing, 2010 IEEE 71st Vehicular Technology Conference, 9 (2010), 1-4.  doi: 10.1109/VETECS.2010.5493676.  Google Scholar

[13]

H. YuW. Tang and S. Li, Joint optimal sensing time and power allocation for multi-channel cognitive radio networks considering sensing-channel selection, Science China Information Sciences, 57 (2014), 1-8.  doi: 10.1007/s11432-013-4813-x.  Google Scholar

[14]

Y. ZhaoS. Jin and W. Yue, Performance optimization of a dynamic channel bonding strategy in cognitive radio networks, Pacific Journal of Optimization, 9 (2013), 679-696.   Google Scholar

[15]

Y. Zhao and W. Yue, Performance evaluation and optimization of cognitive radio networks with adjustable access control for multiple secondary users, Journal of Industrial and Management Optimization, 15 (2019), 1-14.  doi: 10.3934/jimo.2018029.  Google Scholar

[16]

Y. Zhao and W. Yue, Cognitive radio networks with multiple secondary users under two kinds of priority schemes: Performance comparison and optimization, Journal of Industrial and Management Optimization, 13 (2017), 1475-1492.  doi: 10.3934/jimo.2017001.  Google Scholar

show all references

References:
[1]

Y. ChenP. Liao and Y. Wang, A channel-hopping scheme for continuous rendezvous and data delivery in cognitive radio network, Peer-to-Peer Networking and Applications, 9 (2016), 16-27.  doi: 10.1007/s12083-014-0308-9.  Google Scholar

[2]

L. Chouhan and A. Trivedi, Performance study of a CSMA based multi-user MAC protocol for cognitive radio networks: Analysis of channel utilization and opportunity perspective, Wireless Networks, 22 (2016), 33-47.  doi: 10.1007/s11276-015-0947-7.  Google Scholar

[3]

S. JinX. Yao and Z. Ma, A novel spectrum allocation strategy with channel bonding and channel reservation, KSII Transactions on Internet and Information Systems, 9 (2015), 4034-4053.  doi: 10.3837/tiis.2015.10.015.  Google Scholar

[4]

H. KatayamaH. MasuyamaS. Kasahara and Y. Takahashi, Effect of spectrum sensing overhead on performance for cognitive radio networks with channel bonding, Journal of Industrial and Management Optimization, 10 (2014), 21-40.  doi: 10.3934/jimo.2014.10.21.  Google Scholar

[5]

P. KaurA. Khosla and M. Uddin, Markovian queuing model for dynamic spectrum allocation in centralized architecture for cognitive radios, IACSIT International Journal of Engineering and Technology, 3 (2011), 96-101.  doi: 10.7763/IJET.2011.V3.206.  Google Scholar

[6]

K. Kim, T-preemptive priority queue and its application to the analysis of an opportunistic spectrum access in cognitive radio networks, Computers and Operations Research, 39 (2012), 1394-1401.  doi: 10.1016/j.cor.2011.08.008.  Google Scholar

[7]

P. Kolodzy, Spectrum policy task force: Finding and recommendations, International Symposium on Advanced Radio Technologies, 96 (2003), 392-393.   Google Scholar

[8]

S. Lee and G. Hwang, A new analytical model for optimized cognitive radio networks based on stochastic geometry, Journal of Industrial and Management Optimization, 13 (2017), 1883-1899.  doi: 10.3934/jimo.2017023.  Google Scholar

[9]

M. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach, The Johns Hopkins Universit Press, Baltimore, MD, 1981.  Google Scholar

[10]

V. TumuluruP. Wang and D. Niyato, A novel spectrum-scheduling scheme for multi-channel cognitive radio network and performance analysis, IEEE Transactions on Vehicular Technology, 60 (2011), 1849-1858.  doi: 10.1109/TVT.2011.2114682.  Google Scholar

[11]

W. Wang, Z. Ma, W. Yue and Y. Takahashi, Performance analysis of a dynamic channel vacation scheme in cognitive radio networks, In Proceedings of the 13th International Conference on Queueing Theory and Network Applications, (2018), 183-190. doi: 10.1007/978-3-319-93736-6_14.  Google Scholar

[12]

K. WuW. WangH. LuoG. Yu and Z. Zhang, Optimal resource allocation for cognitive radio networks with imperfect spectrum sensing, 2010 IEEE 71st Vehicular Technology Conference, 9 (2010), 1-4.  doi: 10.1109/VETECS.2010.5493676.  Google Scholar

[13]

H. YuW. Tang and S. Li, Joint optimal sensing time and power allocation for multi-channel cognitive radio networks considering sensing-channel selection, Science China Information Sciences, 57 (2014), 1-8.  doi: 10.1007/s11432-013-4813-x.  Google Scholar

[14]

Y. ZhaoS. Jin and W. Yue, Performance optimization of a dynamic channel bonding strategy in cognitive radio networks, Pacific Journal of Optimization, 9 (2013), 679-696.   Google Scholar

[15]

Y. Zhao and W. Yue, Performance evaluation and optimization of cognitive radio networks with adjustable access control for multiple secondary users, Journal of Industrial and Management Optimization, 15 (2019), 1-14.  doi: 10.3934/jimo.2018029.  Google Scholar

[16]

Y. Zhao and W. Yue, Cognitive radio networks with multiple secondary users under two kinds of priority schemes: Performance comparison and optimization, Journal of Industrial and Management Optimization, 13 (2017), 1475-1492.  doi: 10.3934/jimo.2017001.  Google Scholar

Figure 1.  The dynamic channel vacation scheme proposed in this paper
Figure 2.  The running mode of the system
Figure 3.  The relation of $ E({L_1}) $ to $ {\mu _2} $ and $ c $
Figure 4.  The relation of $ E({L_2}) $ to $ {\mu _2} $ and $ \theta $
Figure 5.  The relation of $ {P_d} $ to $ {\lambda _2} $ and $ c $
Figure 6.  The relation of $ {P_b} $ to $ {\lambda _2} $ and $ c $
Figure 7.  The relation of $ {P_{wv}} $ to $ {\lambda _2} $ and $ c $
Figure 8.  The relation of $ {P_u} $ to $ {\mu _2} $ and $ c $
Figure 9.  The relation of $ {U_{I1}} $ to $ \mu_2 $ and $ \theta $
Figure 10.  The relation of $ {U_{I2}} $ to $ \mu_2 $ and $ \theta $
Figure 11.  The relation of $ {U_{s}} $ to $ {\lambda _2} $ and $ c $
Figure 12.  The relation of $ {U_{s}} $ to $ {\mu_2} $ and $ \theta $
Table 1.  The Relation of $ E(B) $ to $ {\lambda _2} $ and $ c $
$ c $ $ \lambda _2 =6 $ $ \lambda _2 =7 $ $ \lambda _2=8 $ $ \lambda _2=9 $ $ \lambda _2=10 $
3 0.4900 0.4983 0.5052 0.5109 0.5156
4 0.4678 0.4793 0.4891 0.4975 0.5046
5 0.4594 0.4731 0.4852 0.4957 0.5049
$ c $ $ \lambda _2 =6 $ $ \lambda _2 =7 $ $ \lambda _2=8 $ $ \lambda _2=9 $ $ \lambda _2=10 $
3 0.4900 0.4983 0.5052 0.5109 0.5156
4 0.4678 0.4793 0.4891 0.4975 0.5046
5 0.4594 0.4731 0.4852 0.4957 0.5049
[1]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[2]

Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020366

[3]

Yao Nie, Jia Yuan. The Littlewood-Paley $ pth $-order moments in three-dimensional MHD turbulence. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020397

[4]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

[5]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351

[6]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[7]

Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021010

[8]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[9]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[10]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226

[11]

Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020034

[12]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[13]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[14]

Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046

[15]

Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021013

[16]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[17]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[18]

Lu Xu, Chunlai Mu, Qiao Xin. Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020396

[19]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[20]

Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020173

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]