
-
Previous Article
A note on optimization modelling of piecewise linear delay costing in the airline industry
- JIMO Home
- This Issue
-
Next Article
Integrated optimization of process planning and scheduling for reducing carbon emissions
Integration of cuckoo search and fuzzy support vector machine for intelligent diagnosis of production process quality
College of Management Science, Chengdu University of Technology, Chengdu 610059, China |
The quality of High-tech products usually influenced by numerous cross-correlation quality characteristics in production process. However, traditional quality control method is difficult to satisfy the requirement of monitoring and diagnosing multiple related quality characteristics. Scholars found that the diagnosis effect of support vector machine method is better than others. But, constructing fuzzy support vector machine for diagnosis by calculating the sample membership degree from the sample point to the class center is vulnerable to the influence of sample noise points because it will lead to low accuracy rate. Therefore, this paper focus on exploring the issue about the abnormal pattern and intelligent diagnosis of interrelated multivariable process quality, by taking the multivariable quality characteristics of capacitor as research object. Using multivariate exponentially weighted moving average (MEWMA) control chart to joint monitor the multiple quality characteristics. Constructing a fuzzy support vector machine (FSVM) based on cloud calculative model and cuckoo search (CS) for intelligent diagnosis on abnormal pattern. The result showed that the diagnostic accuracy rate for sample data is 97.42%. In instance analysis, the average diagnosis accuracy rate is 95.60%. It verifies the CS-FSVM model has a good diagnosis performance.
References:
[1] |
S. Abe,
Fuzzy support vector machines for multilabel classification, Pattern Recognition, 48 (2015), 2110-2117.
doi: 10.1016/j.patcog.2015.01.009. |
[2] |
Z. Bo, Research on automatic processing quality control method based on support vector machine, Chongqing University. Google Scholar |
[3] |
H. M. Bush, P. Chongfuangprinya, V. C. Chen, T. Sukchotrat and S. B. Kim,
Nonparametric multivariate control charts based on a linkage ranking algorithm, Quality Reliability Engrg. Internat., 26 (2010), 663-675.
doi: 10.1002/qre.1129. |
[4] |
J. Camacho, A. Pérez-Villegas, P. García Teodoro and G. Maciá Fernández,
PCA-based multivariate statistical network monitoring for anomaly detection, Comput. & Security, 59 (2016), 118-137.
doi: 10.1016/j.cose.2016.02.008. |
[5] |
G. Capizzi,
Recent advances in process monitoring: Nonparametric and variable-selection methods for Phase I and Phase II, Quality Engrg., 27 (2015), 44-67.
doi: 10.1080/08982112.2015.968046. |
[6] |
Z.-Y. Chang and J.-S. Sun, Adaptive EWMA control chart statistical economic design, Control Decision, 31 (2015), 1715-1719. Google Scholar |
[7] |
C.-S. Cheng and H.-T. Lee,
Diagnosing the variance shifts signal in multivariate process control using ensemble classifiers, J. Chinese Institute Engineers, 39 (2016), 64-73.
doi: 10.1080/02533839.2015.1073662. |
[8] |
Z.-Q. Cheng, Y.-Z. Ma and J. Bu,
Variance shifts identification model of bivariate process based on LS-SVM pattern recognizer, Comm. Statist. Simulation Comput., 40 (2011), 274-284.
doi: 10.1080/03610918.2010.535625. |
[9] |
X. Y. Chew, M. B. C. Khoo, S. Y. Teh and P. Castagliola,
The variable sampling interval run sum $\bar{X}$ control chart, Comput. & Industr. Engrg., 90 (2015), 25-38.
doi: 10.1016/j.cie.2015.08.015. |
[10] |
P. Chinas, I. Lopez, J. A. Vazquez, R. Osorio and G. Lefranc,
SVM and ANN application to multivariate pattern recognition using scatter data, IEEE Latin America Transactions, 13 (2015), 1633-1639.
doi: 10.1109/TLA.2015.7112025. |
[11] |
P. Chongfuangprinya, S. B. Kim, S.-K. Park and T. Sukchotrat,
Integration of support vector machines and control charts for multivariate process monitoring, J. Stat. Comput. Simul., 81 (2011), 1157-1173.
doi: 10.1080/00949651003789074. |
[12] |
A. Dhini and I. Surjandari, Review on some multivariate statistical process control methods for process monitoring, in Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management in Kuala Lumpur, 2016,754–759. Google Scholar |
[13] |
S. Du, D. Huang and J. Lv,
Recognition of concurrent control chart patterns using wavelet transform decomposition and multiclass support vector machines, Comput. & Industr. Engrg., 66 (2013), 683-695.
doi: 10.1016/j.cie.2013.09.012. |
[14] |
A. Ebrahimzadeh, J. Addeh and Z. Rahmani,
Control chart pattern recognition using k-mica clustering and neural networks, ISA transactions, 51 (2012), 111-119.
doi: 10.1016/j.isatra.2011.08.005. |
[15] |
Q. Fan, Z. Wang, D. Li, D. Gao and H. Zha,
Entropy-based fuzzy support vector machine for imbalanced datasets, Knowledge-Based Syst., 115 (2017), 87-99.
doi: 10.1016/j.knosys.2016.09.032. |
[16] |
S. He, W. Jiang and H. Deng,
A distance-based control chart for monitoring multivariate processes using support vector machines, Ann. Oper. Res., 263 (2018), 191-207.
doi: 10.1007/s10479-016-2186-4. |
[17] |
S.-G. He and E.-S. Qi, Multivariate statistical process control and diagnosis model based on projection transformation, J. Tianjin Univ., 41 (2008), 1512-1517. Google Scholar |
[18] |
H. Hotelling, Multivariate Quality Control. Techniques of Statistical Analysis, McGraw-Hill, New York. Google Scholar |
[19] |
C.-C. Hsu, M.-C. Chen and L.-S. Chen,
Intelligent ICA–SVM fault detector for non-Gaussian multivariate process monitoring, Expert Syst. Appl., 37 (2010), 3264-3273.
doi: 10.1016/j.eswa.2009.09.053. |
[20] |
J. Jiadong and F. Yuncheng, A new control diagram based on characteristic structure of covariance matrix, China Management Sci., 3 (2011), 123-133. Google Scholar |
[21] |
M. B. C. Khoo, Z. Wu, P. Castagliola and H. C. Lee,
A multivariate synthetic double sampling $T^2$ control chart, Comput. & Industr. Engrg., 64 (2013), 179-189.
doi: 10.1016/j.cie.2012.08.017. |
[22] |
T.-F. Li, S. Hu, Z.-Y. Wei and Z.-Q. Liao, A framework for diagnosing the out-of-control signals in multivariate process using optimized support vector machines, Math. Probl. Engrg., 2013 (2013).
doi: 10.1155/2013/494626. |
[23] |
W. Li, X. Pu, F. Tsung and D. Xiang,
A robust self-starting spatial rank multivariate EWMA chart based on forward variable selection, Comput. & Industr. Engrg., 103 (2017), 116-130.
doi: 10.1016/j.cie.2016.11.024. |
[24] |
Y. Li, Y. Liu, C. Zou and W. Jiang,
A self-starting control chart for high-dimensional short-run processes, Internat. J. Prod. Res., 52 (2014), 445-461.
doi: 10.1080/00207543.2013.832001. |
[25] |
W. Liang, X. Pu and Y. Li,
A new EWMA chart based on weighted loss function for monitoring the process mean and variance, Quality Reliability Engrg. Internat., 31 (2015), 905-916.
doi: 10.1002/qre.1647. |
[26] |
T. Linghan, M. Rui and Y. Dong, An improved control chart of multiple exponential weighted moving average, J.Shanghai Jiaotong Univ., 6 (2010), 868-872. Google Scholar |
[27] |
T.-J. Liu, Z.-G. Liu and Z.-W. Han, Application of adaptive fuzzy support vector machine proximity increment algorithm in transformer fault diagnosis, Power Syst. Protection Control, 38 (2010), 47-52. Google Scholar |
[28] |
Y. Liu, B. Zhang, B. Chen and Y. Yang,
Robust solutions to fuzzy one-class support vector machine, Pattern Recognition Lett., 71 (2016), 73-77.
doi: 10.1016/j.patrec.2015.12.014. |
[29] |
H. Long, Research on Ae Signal Feature Extraction and Diagnosis Method of Wind Gearbox Bearing Fault, Doctoral dissertation. Google Scholar |
[30] |
C. A. Lowry, W. H. Woodall, C. W. Champ and S. E. Rigdon,
A multivariate exponentially weighted moving average control chart, Technometrics, 34 (1992), 46-53.
doi: 10.2307/1269551. |
[31] |
V. Martynyuk, M. Ortigueira, M. Fedula and O. Savenko,
Methodology of electrochemical capacitor quality control with fractional order model, AEU-Internat. J. Electron. Comm., 91 (2018), 118-124.
doi: 10.1016/j.aeue.2018.05.005. |
[32] |
I. Masood and A. Hassan,
Bivariate quality control using two-stage intelligent monitoring scheme, Expert Syst. Appl., 41 (2014), 7579-7595.
doi: 10.1016/j.eswa.2014.05.042. |
[33] |
I. Masood and V. B. E. Shyen, Quality control in hard disc drive manufacturing using pattern recognition technique, in IOP Conference Series: Materials Science and Engineering, 160, IOP Publishing, 2016.
doi: 10.1088/1757-899X/160/1/012008. |
[34] |
K. Nishimura, S. Matsuura and H. Suzuki,
Multivariate EWMA control chart based on a variable selection using AIC for multivariate statistical process monitoring, Statist. Probab. Lett., 104 (2015), 7-13.
doi: 10.1016/j.spl.2015.05.003. |
[35] |
J. Park and C.-H. Jun,
A new multivariate EWMA control chart via multiple testing, J. Process Control, 26 (2015), 51-55.
doi: 10.1016/j.jprocont.2015.01.007. |
[36] |
P. Phaladiganon, S. B. Kim, V. C. P. Chen, J.-G. Baek and S.-K. Park,
Bootstrap-based $T^2$ multivariate control charts, Comm. Statist. Simulation Comput., 40 (2011), 645-662.
doi: 10.1080/03610918.2010.549989. |
[37] |
V. Ranaee, A. Ebrahimzadeh and R. Ghaderi,
Application of the PSO–SVM model for recognition of control chart patterns, ISA Transactions, 49 (2010), 577-586.
doi: 10.1016/j.isatra.2010.06.005. |
[38] |
M. Raugei, A. Hutchinson and D. Morrey,
Can electric vehicles significantly reduce our dependence on non-renewable energy? Scenarios of compact vehicles in the UK as a case in point, J. Cleaner Prod., 201 (2018), 1043-1051.
doi: 10.1016/j.jclepro.2018.08.107. |
[39] |
M. Salehi, A. Bahreininejad and I. Nakhai,
On-line analysis of out-of-control signals in multivariate manufacturing processes using a hybrid learning-based model, Neurocomputing, 74 (2011), 2083-2095.
doi: 10.1016/j.neucom.2010.12.020. |
[40] |
M. Salehi, R. B. Kazemzadeh and A. Salmasnia,
On line detection of mean and variance shift using neural networks and support vector machine in multivariate processes, Appl. Soft Comput., 12 (2012), 2973-2984.
doi: 10.1016/j.asoc.2012.04.024. |
[41] |
G. Tuerhong and S. B. Kim,
Gower distance-based multivariate control charts for a mixture of continuous and categorical variables, Expert Syst. Appl., 41 (2014), 1701-1707.
doi: 10.1016/j.eswa.2013.08.068. |
[42] |
F.-K. Wang, B. Bizuneh and X.-B. Cheng,
One-sided control chart based on support vector machines with differential evolution algorithm, Quality Reliability Engrg. Internat., 35 (2019), 1634-1645.
doi: 10.1002/qre.2465. |
[43] |
Z. Wang, C. Zhao, J. Yin and B. Zhang,
Purchasing intentions of Chinese citizens on new energy vehicles: How should one respond to current preferential policy?, J. Cleaner Prod., 161 (2017), 1000-1010.
doi: 10.1016/j.jclepro.2017.05.154. |
[44] |
C. Wu and L. Zhao, Control graph pattern recognition based on wavelet analysis and SVM, China Mechanical Engrg., 21 (2010), 1572-1576. Google Scholar |
[45] |
Z.-Z. Wu, Research on monitoring the source of abnormal mean value of multivariable programming using neural network and support vector machine technology, Tao Yuan, Yuanzhi University. Google Scholar |
[46] |
X. Yan and Y.-Q. Zhang, Membership algorithm for FSVM remote sensing image classification using cloud model, Comput. Appl. Software, 30. Google Scholar |
[47] |
D.-X. Yang, L.-S. Qiu, J.-J. Yan, Z.-Y. Chen and M. Jiang,
The government regulation and market behavior of the new energy automotive industry, J. Cleaner Prod., 210 (2019), 1281-1288.
doi: 10.1016/j.jclepro.2018.11.124. |
[48] |
S.-Y. Yang and H. Zhang, Pattern Recognition and Intelligent Computing, Publishing House of Electronic Industry, Beijing, 2015. Google Scholar |
[49] |
W.-A. Yang,
Monitoring and diagnosing of mean shifts in multivariate manufacturing processes using two-level selective ensemble of learning vector quantization neural networks, J. Intell. Manufac., 26 (2015), 769-783.
doi: 10.1007/s10845-013-0833-z. |
[50] |
X. Zha, S. Ni and P. Zhang,
Fuzzy support vector machine method based on multi-region partition, J. Central South Univ. (Natural Sci. Ed.), 5 (2015), 1680-1687.
doi: 10.11817/j.issn.1672-7207.2015.05.016. |
[51] |
Y.-M. Zhao, Z. He and S.-G. He, Support vector machine multiple control graph mean deviation diagnosis model based on PSO, J. Tianjin Univ. (Natural Sci. Engrg. Tech. Ed.), 46 (2013), 469-475. Google Scholar |
[52] |
Y.-M. Zhao, Z. He and M. Zhang, Binary process mean vector and covariance monitoring based on joint control graph, Syst. Engrg., 30 (2012), 111-116. Google Scholar |
show all references
References:
[1] |
S. Abe,
Fuzzy support vector machines for multilabel classification, Pattern Recognition, 48 (2015), 2110-2117.
doi: 10.1016/j.patcog.2015.01.009. |
[2] |
Z. Bo, Research on automatic processing quality control method based on support vector machine, Chongqing University. Google Scholar |
[3] |
H. M. Bush, P. Chongfuangprinya, V. C. Chen, T. Sukchotrat and S. B. Kim,
Nonparametric multivariate control charts based on a linkage ranking algorithm, Quality Reliability Engrg. Internat., 26 (2010), 663-675.
doi: 10.1002/qre.1129. |
[4] |
J. Camacho, A. Pérez-Villegas, P. García Teodoro and G. Maciá Fernández,
PCA-based multivariate statistical network monitoring for anomaly detection, Comput. & Security, 59 (2016), 118-137.
doi: 10.1016/j.cose.2016.02.008. |
[5] |
G. Capizzi,
Recent advances in process monitoring: Nonparametric and variable-selection methods for Phase I and Phase II, Quality Engrg., 27 (2015), 44-67.
doi: 10.1080/08982112.2015.968046. |
[6] |
Z.-Y. Chang and J.-S. Sun, Adaptive EWMA control chart statistical economic design, Control Decision, 31 (2015), 1715-1719. Google Scholar |
[7] |
C.-S. Cheng and H.-T. Lee,
Diagnosing the variance shifts signal in multivariate process control using ensemble classifiers, J. Chinese Institute Engineers, 39 (2016), 64-73.
doi: 10.1080/02533839.2015.1073662. |
[8] |
Z.-Q. Cheng, Y.-Z. Ma and J. Bu,
Variance shifts identification model of bivariate process based on LS-SVM pattern recognizer, Comm. Statist. Simulation Comput., 40 (2011), 274-284.
doi: 10.1080/03610918.2010.535625. |
[9] |
X. Y. Chew, M. B. C. Khoo, S. Y. Teh and P. Castagliola,
The variable sampling interval run sum $\bar{X}$ control chart, Comput. & Industr. Engrg., 90 (2015), 25-38.
doi: 10.1016/j.cie.2015.08.015. |
[10] |
P. Chinas, I. Lopez, J. A. Vazquez, R. Osorio and G. Lefranc,
SVM and ANN application to multivariate pattern recognition using scatter data, IEEE Latin America Transactions, 13 (2015), 1633-1639.
doi: 10.1109/TLA.2015.7112025. |
[11] |
P. Chongfuangprinya, S. B. Kim, S.-K. Park and T. Sukchotrat,
Integration of support vector machines and control charts for multivariate process monitoring, J. Stat. Comput. Simul., 81 (2011), 1157-1173.
doi: 10.1080/00949651003789074. |
[12] |
A. Dhini and I. Surjandari, Review on some multivariate statistical process control methods for process monitoring, in Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management in Kuala Lumpur, 2016,754–759. Google Scholar |
[13] |
S. Du, D. Huang and J. Lv,
Recognition of concurrent control chart patterns using wavelet transform decomposition and multiclass support vector machines, Comput. & Industr. Engrg., 66 (2013), 683-695.
doi: 10.1016/j.cie.2013.09.012. |
[14] |
A. Ebrahimzadeh, J. Addeh and Z. Rahmani,
Control chart pattern recognition using k-mica clustering and neural networks, ISA transactions, 51 (2012), 111-119.
doi: 10.1016/j.isatra.2011.08.005. |
[15] |
Q. Fan, Z. Wang, D. Li, D. Gao and H. Zha,
Entropy-based fuzzy support vector machine for imbalanced datasets, Knowledge-Based Syst., 115 (2017), 87-99.
doi: 10.1016/j.knosys.2016.09.032. |
[16] |
S. He, W. Jiang and H. Deng,
A distance-based control chart for monitoring multivariate processes using support vector machines, Ann. Oper. Res., 263 (2018), 191-207.
doi: 10.1007/s10479-016-2186-4. |
[17] |
S.-G. He and E.-S. Qi, Multivariate statistical process control and diagnosis model based on projection transformation, J. Tianjin Univ., 41 (2008), 1512-1517. Google Scholar |
[18] |
H. Hotelling, Multivariate Quality Control. Techniques of Statistical Analysis, McGraw-Hill, New York. Google Scholar |
[19] |
C.-C. Hsu, M.-C. Chen and L.-S. Chen,
Intelligent ICA–SVM fault detector for non-Gaussian multivariate process monitoring, Expert Syst. Appl., 37 (2010), 3264-3273.
doi: 10.1016/j.eswa.2009.09.053. |
[20] |
J. Jiadong and F. Yuncheng, A new control diagram based on characteristic structure of covariance matrix, China Management Sci., 3 (2011), 123-133. Google Scholar |
[21] |
M. B. C. Khoo, Z. Wu, P. Castagliola and H. C. Lee,
A multivariate synthetic double sampling $T^2$ control chart, Comput. & Industr. Engrg., 64 (2013), 179-189.
doi: 10.1016/j.cie.2012.08.017. |
[22] |
T.-F. Li, S. Hu, Z.-Y. Wei and Z.-Q. Liao, A framework for diagnosing the out-of-control signals in multivariate process using optimized support vector machines, Math. Probl. Engrg., 2013 (2013).
doi: 10.1155/2013/494626. |
[23] |
W. Li, X. Pu, F. Tsung and D. Xiang,
A robust self-starting spatial rank multivariate EWMA chart based on forward variable selection, Comput. & Industr. Engrg., 103 (2017), 116-130.
doi: 10.1016/j.cie.2016.11.024. |
[24] |
Y. Li, Y. Liu, C. Zou and W. Jiang,
A self-starting control chart for high-dimensional short-run processes, Internat. J. Prod. Res., 52 (2014), 445-461.
doi: 10.1080/00207543.2013.832001. |
[25] |
W. Liang, X. Pu and Y. Li,
A new EWMA chart based on weighted loss function for monitoring the process mean and variance, Quality Reliability Engrg. Internat., 31 (2015), 905-916.
doi: 10.1002/qre.1647. |
[26] |
T. Linghan, M. Rui and Y. Dong, An improved control chart of multiple exponential weighted moving average, J.Shanghai Jiaotong Univ., 6 (2010), 868-872. Google Scholar |
[27] |
T.-J. Liu, Z.-G. Liu and Z.-W. Han, Application of adaptive fuzzy support vector machine proximity increment algorithm in transformer fault diagnosis, Power Syst. Protection Control, 38 (2010), 47-52. Google Scholar |
[28] |
Y. Liu, B. Zhang, B. Chen and Y. Yang,
Robust solutions to fuzzy one-class support vector machine, Pattern Recognition Lett., 71 (2016), 73-77.
doi: 10.1016/j.patrec.2015.12.014. |
[29] |
H. Long, Research on Ae Signal Feature Extraction and Diagnosis Method of Wind Gearbox Bearing Fault, Doctoral dissertation. Google Scholar |
[30] |
C. A. Lowry, W. H. Woodall, C. W. Champ and S. E. Rigdon,
A multivariate exponentially weighted moving average control chart, Technometrics, 34 (1992), 46-53.
doi: 10.2307/1269551. |
[31] |
V. Martynyuk, M. Ortigueira, M. Fedula and O. Savenko,
Methodology of electrochemical capacitor quality control with fractional order model, AEU-Internat. J. Electron. Comm., 91 (2018), 118-124.
doi: 10.1016/j.aeue.2018.05.005. |
[32] |
I. Masood and A. Hassan,
Bivariate quality control using two-stage intelligent monitoring scheme, Expert Syst. Appl., 41 (2014), 7579-7595.
doi: 10.1016/j.eswa.2014.05.042. |
[33] |
I. Masood and V. B. E. Shyen, Quality control in hard disc drive manufacturing using pattern recognition technique, in IOP Conference Series: Materials Science and Engineering, 160, IOP Publishing, 2016.
doi: 10.1088/1757-899X/160/1/012008. |
[34] |
K. Nishimura, S. Matsuura and H. Suzuki,
Multivariate EWMA control chart based on a variable selection using AIC for multivariate statistical process monitoring, Statist. Probab. Lett., 104 (2015), 7-13.
doi: 10.1016/j.spl.2015.05.003. |
[35] |
J. Park and C.-H. Jun,
A new multivariate EWMA control chart via multiple testing, J. Process Control, 26 (2015), 51-55.
doi: 10.1016/j.jprocont.2015.01.007. |
[36] |
P. Phaladiganon, S. B. Kim, V. C. P. Chen, J.-G. Baek and S.-K. Park,
Bootstrap-based $T^2$ multivariate control charts, Comm. Statist. Simulation Comput., 40 (2011), 645-662.
doi: 10.1080/03610918.2010.549989. |
[37] |
V. Ranaee, A. Ebrahimzadeh and R. Ghaderi,
Application of the PSO–SVM model for recognition of control chart patterns, ISA Transactions, 49 (2010), 577-586.
doi: 10.1016/j.isatra.2010.06.005. |
[38] |
M. Raugei, A. Hutchinson and D. Morrey,
Can electric vehicles significantly reduce our dependence on non-renewable energy? Scenarios of compact vehicles in the UK as a case in point, J. Cleaner Prod., 201 (2018), 1043-1051.
doi: 10.1016/j.jclepro.2018.08.107. |
[39] |
M. Salehi, A. Bahreininejad and I. Nakhai,
On-line analysis of out-of-control signals in multivariate manufacturing processes using a hybrid learning-based model, Neurocomputing, 74 (2011), 2083-2095.
doi: 10.1016/j.neucom.2010.12.020. |
[40] |
M. Salehi, R. B. Kazemzadeh and A. Salmasnia,
On line detection of mean and variance shift using neural networks and support vector machine in multivariate processes, Appl. Soft Comput., 12 (2012), 2973-2984.
doi: 10.1016/j.asoc.2012.04.024. |
[41] |
G. Tuerhong and S. B. Kim,
Gower distance-based multivariate control charts for a mixture of continuous and categorical variables, Expert Syst. Appl., 41 (2014), 1701-1707.
doi: 10.1016/j.eswa.2013.08.068. |
[42] |
F.-K. Wang, B. Bizuneh and X.-B. Cheng,
One-sided control chart based on support vector machines with differential evolution algorithm, Quality Reliability Engrg. Internat., 35 (2019), 1634-1645.
doi: 10.1002/qre.2465. |
[43] |
Z. Wang, C. Zhao, J. Yin and B. Zhang,
Purchasing intentions of Chinese citizens on new energy vehicles: How should one respond to current preferential policy?, J. Cleaner Prod., 161 (2017), 1000-1010.
doi: 10.1016/j.jclepro.2017.05.154. |
[44] |
C. Wu and L. Zhao, Control graph pattern recognition based on wavelet analysis and SVM, China Mechanical Engrg., 21 (2010), 1572-1576. Google Scholar |
[45] |
Z.-Z. Wu, Research on monitoring the source of abnormal mean value of multivariable programming using neural network and support vector machine technology, Tao Yuan, Yuanzhi University. Google Scholar |
[46] |
X. Yan and Y.-Q. Zhang, Membership algorithm for FSVM remote sensing image classification using cloud model, Comput. Appl. Software, 30. Google Scholar |
[47] |
D.-X. Yang, L.-S. Qiu, J.-J. Yan, Z.-Y. Chen and M. Jiang,
The government regulation and market behavior of the new energy automotive industry, J. Cleaner Prod., 210 (2019), 1281-1288.
doi: 10.1016/j.jclepro.2018.11.124. |
[48] |
S.-Y. Yang and H. Zhang, Pattern Recognition and Intelligent Computing, Publishing House of Electronic Industry, Beijing, 2015. Google Scholar |
[49] |
W.-A. Yang,
Monitoring and diagnosing of mean shifts in multivariate manufacturing processes using two-level selective ensemble of learning vector quantization neural networks, J. Intell. Manufac., 26 (2015), 769-783.
doi: 10.1007/s10845-013-0833-z. |
[50] |
X. Zha, S. Ni and P. Zhang,
Fuzzy support vector machine method based on multi-region partition, J. Central South Univ. (Natural Sci. Ed.), 5 (2015), 1680-1687.
doi: 10.11817/j.issn.1672-7207.2015.05.016. |
[51] |
Y.-M. Zhao, Z. He and S.-G. He, Support vector machine multiple control graph mean deviation diagnosis model based on PSO, J. Tianjin Univ. (Natural Sci. Engrg. Tech. Ed.), 46 (2013), 469-475. Google Scholar |
[52] |
Y.-M. Zhao, Z. He and M. Zhang, Binary process mean vector and covariance monitoring based on joint control graph, Syst. Engrg., 30 (2012), 111-116. Google Scholar |













Number of abnormal variables | Production process status | Combination patterns | Output value |
No abnormity | (0, 0, 0) | ||
One | Mean-shift of first variable | (1, 0, 0) | 1 |
Mean-shift of Second variable | (0, 1, 0) | 2 | |
Mean-shift of Third variable | (0, 0, 1) | 3 | |
Two | Mean-shift of first and second variable | (1, 1, 0) | 4 |
Mean-shift of first and third variable | (1, 0, 1) | 5 | |
Mean-shift of second and third variable | (0, 1, 1) | 6 | |
Three | Mean-shift of three variables | (1, 1, 1) | 7 |
Number of abnormal variables | Production process status | Combination patterns | Output value |
No abnormity | (0, 0, 0) | ||
One | Mean-shift of first variable | (1, 0, 0) | 1 |
Mean-shift of Second variable | (0, 1, 0) | 2 | |
Mean-shift of Third variable | (0, 0, 1) | 3 | |
Two | Mean-shift of first and second variable | (1, 1, 0) | 4 |
Mean-shift of first and third variable | (1, 0, 1) | 5 | |
Mean-shift of second and third variable | (0, 1, 1) | 6 | |
Three | Mean-shift of three variables | (1, 1, 1) | 7 |
Type | Mean offset | Diagnostic accuracy | |||
CS-FSVM | CS-SVM | FSVM | SVM | ||
(1, 0, 0) | 96.74% | 86.44% | 88.28% | 78.86% | |
(0, 1, 0) | 98.15% | 88.5% | 90.36% | 86.34% | |
(0, 0, 1) | 97.24% | 89.33% | 92.54% | 88.52% | |
(1, 1, 0) | 96.65% | 90.65% | 89.25% | 84.3% | |
(1, 0, 1) | 98.5% | 87.5% | 89.37% | 82.65% | |
(0, 1, 1) | 97.26% | 88.26% | 88.42% | 79.64% | |
(1, 1, 1) | 97.71% | 80.71% | 82.77% | 80.22% | |
Average diagnostic accuracy | 97.42% | 87.34% | 88.71% | 82.93% |
Type | Mean offset | Diagnostic accuracy | |||
CS-FSVM | CS-SVM | FSVM | SVM | ||
(1, 0, 0) | 96.74% | 86.44% | 88.28% | 78.86% | |
(0, 1, 0) | 98.15% | 88.5% | 90.36% | 86.34% | |
(0, 0, 1) | 97.24% | 89.33% | 92.54% | 88.52% | |
(1, 1, 0) | 96.65% | 90.65% | 89.25% | 84.3% | |
(1, 0, 1) | 98.5% | 87.5% | 89.37% | 82.65% | |
(0, 1, 1) | 97.26% | 88.26% | 88.42% | 79.64% | |
(1, 1, 1) | 97.71% | 80.71% | 82.77% | 80.22% | |
Average diagnostic accuracy | 97.42% | 87.34% | 88.71% | 82.93% |
Abnormal variable | Combination pattern | Diagnosis accuracy | Average accuracy |
(d) | (1, 0) | 95.42% | 95.60% |
(h) | (0, 1) | 96.08% | |
(d) & (h) | (1, 1) | 95.31% |
Abnormal variable | Combination pattern | Diagnosis accuracy | Average accuracy |
(d) | (1, 0) | 95.42% | 95.60% |
(h) | (0, 1) | 96.08% | |
(d) & (h) | (1, 1) | 95.31% |
[1] |
Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018 |
[2] |
Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219 |
[3] |
Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043 |
[4] |
Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1079-1092. doi: 10.3934/dcdss.2020352 |
[5] |
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020345 |
[6] |
Min Ji, Xinna Ye, Fangyao Qian, T.C.E. Cheng, Yiwei Jiang. Parallel-machine scheduling in shared manufacturing. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020174 |
[7] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[8] |
Balázs Kósa, Karol Mikula, Markjoe Olunna Uba, Antonia Weberling, Neophytos Christodoulou, Magdalena Zernicka-Goetz. 3D image segmentation supported by a point cloud. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 971-985. doi: 10.3934/dcdss.2020351 |
[9] |
Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127 |
[10] |
Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020176 |
[11] |
Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005 |
[12] |
M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014 |
[13] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[14] |
Wen Li, Wei-Hui Liu, Seak Weng Vong. Perron vector analysis for irreducible nonnegative tensors and its applications. Journal of Industrial & Management Optimization, 2021, 17 (1) : 29-50. doi: 10.3934/jimo.2019097 |
[15] |
Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117 |
[16] |
Editorial Office. Retraction: Jinling Wei, Jinming Zhang, Meishuang Dong, Fan Zhang, Yunmo Chen, Sha Jin and Zhike Han, Applications of mathematics to maritime search. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 957-957. doi: 10.3934/dcdss.2019064 |
[17] |
Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020158 |
[18] |
Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145 |
[19] |
Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002 |
[20] |
Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017 |
2019 Impact Factor: 1.366
Tools
Article outline
Figures and Tables
[Back to Top]