No of Iteration | CPU time (sec) | |
$ N= 50 $ | 19 | 0.0289 |
$ N=100 $ | 19 | 0.0386 |
$ N=500 $ | 41 | 0.1386 |
$ N=1000 $ | 138 | 0.3523 |
We propose a general iterative scheme with inertial term and self-adaptive stepsize for approximating a common solution of Split Variational Inclusion Problem (SVIP) and Fixed Point Problem (FPP) for a quasi-nonexpansive mapping in real Hilbert spaces. We prove that our iterative scheme converges strongly to a common solution of SVIP and FPP for a quasi-nonexpansive mapping, which is also a solution of a certain optimization problem related to a strongly positive bounded linear operator. We apply our proposed algorithm to the problem of finding an equilibrium point with minimal cost of production for a model in industrial electricity production. Numerical results are presented to demonstrate the efficiency of our algorithm in comparison with some other existing algorithms in the literature.
Citation: |
Table 1. Numerical results for Example 5.1
No of Iteration | CPU time (sec) | |
$ N= 50 $ | 19 | 0.0289 |
$ N=100 $ | 19 | 0.0386 |
$ N=500 $ | 41 | 0.1386 |
$ N=1000 $ | 138 | 0.3523 |
Table 2. Numerical results for Example 5.2
Algorithm 3.1 | Algorithm 1.1 | Algorithm 1.2 | ||
Case I | CPU time (sec) | 0.0021 | 0.0071 | 0.0036 |
$ x_0 = 1, x_1 = 0.5 $ | No of Iter. | 8 | 22 | 16 |
Case II | CPU time (sec) | 0.0021 | 0.0041 | 0.0047 |
$ x_0 = -0.5, x_1 = 2 $ | No. of Iter. | 9 | 25 | 17 |
Case III | CPU time (sec) | 0.0044 | 0.0532 | 0.0095 |
$ x_0 = 5, x_1 = 10 $ | No of Iter. | 10 | 28 | 19 |
Case IV | CPU time (sec) | 0.0062 | 0.0589 | 0.0071 |
$ x_0 = -5, x_1 = 2 $ | No of Iter. | 10 | 27 | 19 |
Table 3. Numerical results for Example 5.3
Algorithm 3.1 | Algorithm 1.1 | ||
Choice (i) | CPU time (sec) | 1.7859 | 5.1231 |
No of Iter. | 11 | 23 | |
Choice (ii) | CPU time (sec) | 1.4997 | 13.3981 |
No. of Iter. | 13 | 27 | |
Choice (iii) | CPU time (sec) | 2.6789 | 9.1093 |
No of Iter. | 7 | 12 | |
Choice (iv) | CPU time (sec) | 6.3222 | 24.5622 |
No of Iter. | 11 | 24 |
[1] |
H. A. Abass, K. O. Aremu, L. O. Jolaoso and O. T. Mewomo, An inertial forward-backward splitting method for approximating solutions of certain optimization problems, J. Nonlinear Funct. Anal., 2020 (2020), Art. ID 6, 20 pp.
![]() |
[2] |
M. Abbas, M. Al Sharani, Q. H. Ansari, O. S. Iyiola and Y. Shehu, Iterative methods for solving proximal split minimization problem, Numer. Algorithms, 78 (2018), 193-215.
doi: 10.1007/s11075-017-0372-3.![]() ![]() ![]() |
[3] |
T. O. Alakoya, L. O. Jolaoso and O. T. Mewomo, Modified inertial subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems, Optimization, (2020).
doi: 10.1080/02331934.2020.1723586.![]() ![]() ![]() |
[4] |
F. Alvarez and H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9 (2001), 3-11.
doi: 10.1023/A:1011253113155.![]() ![]() ![]() |
[5] |
J. P. Aubin, Optima and Equilibria: An Introduction to Nonlinear Analysis, Springer, 1993.
doi: 10.1007/978-3-662-02959-6.![]() ![]() ![]() |
[6] |
A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problem, SIAM J. Imaging Sci., 2 (2009), 183-202.
doi: 10.1137/080716542.![]() ![]() ![]() |
[7] |
F. E. Browder, Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc., 74 (1968), 660-665.
doi: 10.1090/S0002-9904-1968-11983-4.![]() ![]() ![]() |
[8] |
C. Byrne, Iterative oblique projection onto convex subsets and the split feasibility problem, Inverse Probl., 18 (2002), 441-453.
doi: 10.1088/0266-5611/18/2/310.![]() ![]() ![]() |
[9] |
C. Byrne, Y. Censor, A. Gibali and S. Reich, Weak and strong convergence of algorithms for the split common null point problem, J. Nonlinear Convex Anal., 13 (2012), 759-775.
![]() ![]() |
[10] |
L. C. Ceng, Q. H. Ansari and J. C. Yao, An extragradient method for solving split feasibility and fixed point problems, Comput. Math. Appl., 64 (2012), 633-642.
doi: 10.1016/j.camwa.2011.12.074.![]() ![]() ![]() |
[11] |
Y. Censor and T. Elfving, A multiprojection algorithms using Bragman projection in a product space, Numer. Algorithms, 8 (1994), 221-239.
doi: 10.1007/BF02142692.![]() ![]() ![]() |
[12] |
Y. Censor, T. Elfving, N. Kopf and T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Probl., 21 (2005), 2071-2084.
doi: 10.1088/0266-5611/21/6/017.![]() ![]() ![]() |
[13] |
L. C. Ceng, Q. H. Ansari and J. C. Yao, An extragradient method for solving split feasibility and fixed point problems, Comput. Math. Appl., 64 (2012), 633-642.
doi: 10.1016/j.camwa.2011.12.074.![]() ![]() ![]() |
[14] |
A. Chambolle and C. Dossal, On the convergence of the iterates of the "fast iterative shrinkage/thresholding algorithm", J. Optim. Theory Appl., 166 (2015), 968-982.
doi: 10.1007/s10957-015-0746-4.![]() ![]() ![]() |
[15] |
R. H. Chan, S. Ma and J. F. Jang, Inertial proximal ADMM for linearly constrained separable convex optimization, SIAM J. Imaging Sci., 8 (2015), 2239-2267.
doi: 10.1137/15100463X.![]() ![]() ![]() |
[16] |
R. Glowinski and P. Le Tallec, Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM, Philadelphia, 9 (1989).
doi: 10.1137/1.9781611970838.![]() ![]() ![]() |
[17] |
A. N. Iusem, On some properties of paramonotone operator, Convex Anal., 5 (1998), 269-278.
![]() ![]() |
[18] |
C. Izuchukwu, G. C. Ugwunnadi, O. T. Mewomo, A. R. Khan and M. Abbas, Proximal-type algorithms for split minimization problem in p-uniformly convex metric space, Numer. Algorithms, 82 (2019), 909-935.
doi: 10.1007/s11075-018-0633-9.![]() ![]() ![]() |
[19] |
L. O. Jolaoso, T. O. Alakoya, A. Taiwo and O. T. Mewomo, A parallel combination extragradient method with Armijo line searching for finding common solution of finite families of equilibrium and fixed point problems, Rend. Circ. Mat. Palermo II, (2019).
doi: 10.1007/s12215-019-00431-2.![]() ![]() |
[20] |
L. O. Jolaoso, T. O. Alakoya, A. Taiwo and O. T. Mewomo, Inertial extragradient method via viscosity approximation approach for solving equilibrium problem in Hilbert space, Optimization, (2020).
doi: 10.1080/02331934.2020.1716752.![]() ![]() |
[21] |
L. O. Jolaoso, F. U. Ogbuisi and O. T. Mewomo, An iterative method for solving minimization, variational inequality and fixed point problems in reflexive Banach spaces, Adv. Pure Appl. Math., 9 (2018), 167-184.
doi: 10.1515/apam-2017-0037.![]() ![]() ![]() |
[22] |
L. O. Jolaoso, K. O. Oyewole, C. C. Okeke and O. T. Mewomo, A unified algorithm for solving split generalized mixed equilibrium problem and fixed point of nonspreading mapping in Hilbert space, Demonstr. Math., 51 (2018), 211-232.
doi: 10.1515/dema-2018-0015.![]() ![]() ![]() |
[23] |
L. O. Jolaoso, A. Taiwo, T. O. Alakoya and O. T. Mewomo, A self adaptive inertial subgradient extragradient algorithm for variational inequality and common fixed point of multivalued mappings in Hilbert spaces, Demonstr. Math., 52 (2019), 183-203.
doi: 10.1515/dema-2019-0013.![]() ![]() ![]() |
[24] |
Y. Kimura and S. Saejung, Strong convergence for a common fixed point of two different generalizations of cutter operators, Linear Nonlinear Anal., 1 (2015), 53-65.
![]() ![]() |
[25] |
L. V. Long, D. V. Thong and V. T. Dung, New algorithms for the split variational inclusion problems and application to split feasibility problems, Optimizaton, (2019).
doi: 10.1080/02331934.2019.1631821.![]() ![]() ![]() |
[26] |
D. Lorenz and T. Pock, An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vision, 51 (2015), 311-325.
doi: 10.1007/s10851-014-0523-2.![]() ![]() ![]() |
[27] |
P. E. Maingé, Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 325 (2007), 469-479.
doi: 10.1016/j.jmaa.2005.12.066.![]() ![]() ![]() |
[28] |
P. E. Maingé, The viscosity approximation process for quasi-nonexpansive mappings in Hilbert spaces, Comput. Math. Appl., 59 (2010), 74-79.
doi: 10.1016/j.camwa.2009.09.003.![]() ![]() ![]() |
[29] |
G. Marino and H. K. Xu, A general iterative method for nonexpansive mapping in Hilbert spaces, J. Math. Anal. Appl., 318 (2006), 43-52.
doi: 10.1016/j.jmaa.2005.05.028.![]() ![]() ![]() |
[30] |
A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl., 150 (2011), 275-283.
doi: 10.1007/s10957-011-9814-6.![]() ![]() ![]() |
[31] |
A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., 241 (2000), 46-55.
doi: 10.1006/jmaa.1999.6615.![]() ![]() ![]() |
[32] |
A. Moudafi and M. Oliny, Convergence of a splitting inertial proximal method for monotone operators, J. Comput. Appl. Math., 152 (2003), 447-454.
doi: 10.1016/S0377-0427(02)00906-8.![]() ![]() ![]() |
[33] |
F. U. Ogbuisi and O. T. Mewomo, Convergence analysis of an inertial accelerated iterative algorithm for solving split variational inequality problem, Adv. Pure Appl. Math., 10 (2019), 339-353.
doi: 10.1515/apam-2017-0132.![]() ![]() ![]() |
[34] |
F. U. Ogbuisi and O. T. Mewomo, Convergence analysis of common solution of certain nonlinear problems, Fixed Point Theory, 19 (2018), 335-358.
doi: 10.24193/fpt-ro.2018.1.26.![]() ![]() ![]() |
[35] |
F. U. Ogbuisi and O. T. Mewomo, Iterative solution of split variational inclusion problem in real Banach space, Afr. Mat., 28 (2017), 295-309.
doi: 10.1007/s13370-016-0450-z.![]() ![]() ![]() |
[36] |
G. N. Ogwo, C. Izuchukwu, K. O. Aremu and O. T. Mewomo, A viscosity iterative algorithm for a family of monotone inclusion problems in an Hadamard space, Bull. Belg. Math. Soc. Simon Stevin, 27 (2020), 127-152.
doi: 10.36045/bbms/1590199308.![]() ![]() ![]() |
[37] |
C. C. Okeke and O. T. Mewomo, On split equilibrium problem, variational inequality problem and fixed point problem for multivalued mappings, Ann. Acad. Rom. Sci. Ser. Math. Appl., 9 (2017), 255-280.
![]() ![]() |
[38] |
P. Phairatchatniyom, P. Kumam, Y. J. Cho, W. Jirakitpuwapat and K. Sitthithakerngkiet, The modified inertial iterative algorithm for solving split variational inclusion problem for multi-valued quasi nonexpansive mappings with some applications, Mathematics, 7 (2019), 560.
doi: 10.3390/math7060560.![]() ![]() |
[39] |
B. T. Polyak, Some methods of speeding up the convergence of iterative methods, Zh. Vychisl. Mat. Mat. Fiz., 4 (1964), 1-17.
![]() ![]() |
[40] |
S. Saejung and P. Yotkaew, Approximation of zeros of inverse strongly monotone operators in Banach spaces, Nonlinear Anal., 75 (2012), 742-750.
doi: 10.1016/j.na.2011.09.005.![]() ![]() ![]() |
[41] |
Y. Shehu and D. Agbebaku, On split inclusion problem and fixed point problem for multi-valued mappings, Comput. Appl. Math., 37 (2018), 1807-1824.
doi: 10.1007/s40314-017-0426-0.![]() ![]() ![]() |
[42] |
Y. Shehu and O. T. Mewomo, Further investigation into split common fixed point problem for demicontractive operators, Acta Math. Sin. (Engl. Ser.), 32 (2016), 1357-1376.
doi: 10.1007/s10114-016-5548-6.![]() ![]() ![]() |
[43] |
A. Taiwo, L. O. Jolaoso and O. T. Mewomo, A modified Halpern algorithm for approximating a common solution of split equality convex minimization problem and fixed point problem in uniformly convex Banach spaces, Comput. Appl. Math., 38 (2019), Art. 77.
doi: 10.1007/s40314-019-0841-5.![]() ![]() ![]() |
[44] |
A. Taiwo, L. O. Jolaoso and O. T. Mewomo, Parallel hybrid algorithm for solving pseudomonotone equilibrium and split common fixed point problems, Bull. Malays. Math. Sci. Soc., 43 (2020), 1893-1918.
doi: 10.1007/s40840-019-00781-1.![]() ![]() ![]() |
[45] |
A. Taiwo, L. O. Jolaoso and O. T. Mewomo, General alternative regularization method for solving split equality common fixed point problem for quasi-pseudocontractive mappings in Hilbert spaces, Ric. Mat., 69 (2020), 235-259.
doi: 10.1007/s11587-019-00460-0.![]() ![]() ![]() |
[46] |
Y. Tang, Convergence analysis of a new iterative algorithm for solving split variational inclusion problems, J. Indus. Mgt Opt., 16 (2020), 945-964.
doi: 10.3934/jimo.2018187.![]() ![]() ![]() |
[47] |
D. Van Hieu, Strong convergence of a new hybrid algorithm for fixed point problems and equilibrium problems, Math. Model. Anal., 24 (2019), 1-19.
doi: 10.3846/mma.2019.001.![]() ![]() ![]() |
[48] |
R. Wangkeeree, K. Rattanaseeha and R. Wangkeeree, The general iterative methods for split variational inclusion problem and fixed point problem in Hilbert spaces, J. Comp. Anal. Appl., 25 (2018), 19-31.
![]() ![]() |
[49] |
H. K. Xu, An iterative approach to quadratic optimization, J. Opt. Theory Appl., 116 (2003), 659-678.
doi: 10.1023/A:1023073621589.![]() ![]() ![]() |
[50] |
H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66 (2002), 240-256.
doi: 10.1112/S0024610702003332.![]() ![]() ![]() |
[51] |
Y. Yao, M. Postolache, X. Qin and J.-C. Yao, Iterative algorithm for proximal split feasibility problem, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 80 (2018), 37-44.
![]() ![]() |
Example 5.1, Top Left:
Example 5.2, Top Left: Case I; Top Left: Case II; Bottom Left: Case III; Bottom Right: Case IV
Example 5.3, Top Left: Choice (i); Top Left: Choice (ii); Bottom Left: Choice (iii); Bottom Right: Choice (iv)