# American Institute of Mathematical Sciences

doi: 10.3934/jimo.2020152

## A self adaptive inertial algorithm for solving split variational inclusion and fixed point problems with applications

 School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa

* Corresponding author: Oluwatosin Temitope Mewomo

Received  November 2019 Revised  March 2020 Published  October 2020

We propose a general iterative scheme with inertial term and self-adaptive stepsize for approximating a common solution of Split Variational Inclusion Problem (SVIP) and Fixed Point Problem (FPP) for a quasi-nonexpansive mapping in real Hilbert spaces. We prove that our iterative scheme converges strongly to a common solution of SVIP and FPP for a quasi-nonexpansive mapping, which is also a solution of a certain optimization problem related to a strongly positive bounded linear operator. We apply our proposed algorithm to the problem of finding an equilibrium point with minimal cost of production for a model in industrial electricity production. Numerical results are presented to demonstrate the efficiency of our algorithm in comparison with some other existing algorithms in the literature.

Citation: Timilehin Opeyemi Alakoya, Lateef Olakunle Jolaoso, Oluwatosin Temitope Mewomo. A self adaptive inertial algorithm for solving split variational inclusion and fixed point problems with applications. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020152
##### References:

show all references

##### References:
Example 5.1, Top Left: $N = 50$; Top Left: $N = 100$; Bottom Left: $N = 500$; Bottom Right: $N = 1000$
Example 5.2, Top Left: Case I; Top Left: Case II; Bottom Left: Case III; Bottom Right: Case IV
Example 5.3, Top Left: Choice (i); Top Left: Choice (ii); Bottom Left: Choice (iii); Bottom Right: Choice (iv)
Numerical results for Example 5.1
 No of Iteration CPU time (sec) $N= 50$ 19 0.0289 $N=100$ 19 0.0386 $N=500$ 41 0.1386 $N=1000$ 138 0.3523
 No of Iteration CPU time (sec) $N= 50$ 19 0.0289 $N=100$ 19 0.0386 $N=500$ 41 0.1386 $N=1000$ 138 0.3523
Numerical results for Example 5.2
 Algorithm 3.1 Algorithm 1.1 Algorithm 1.2 Case I CPU time (sec) 0.0021 0.0071 0.0036 $x_0 = 1, x_1 = 0.5$ No of Iter. 8 22 16 Case II CPU time (sec) 0.0021 0.0041 0.0047 $x_0 = -0.5, x_1 = 2$ No. of Iter. 9 25 17 Case III CPU time (sec) 0.0044 0.0532 0.0095 $x_0 = 5, x_1 = 10$ No of Iter. 10 28 19 Case IV CPU time (sec) 0.0062 0.0589 0.0071 $x_0 = -5, x_1 = 2$ No of Iter. 10 27 19
 Algorithm 3.1 Algorithm 1.1 Algorithm 1.2 Case I CPU time (sec) 0.0021 0.0071 0.0036 $x_0 = 1, x_1 = 0.5$ No of Iter. 8 22 16 Case II CPU time (sec) 0.0021 0.0041 0.0047 $x_0 = -0.5, x_1 = 2$ No. of Iter. 9 25 17 Case III CPU time (sec) 0.0044 0.0532 0.0095 $x_0 = 5, x_1 = 10$ No of Iter. 10 28 19 Case IV CPU time (sec) 0.0062 0.0589 0.0071 $x_0 = -5, x_1 = 2$ No of Iter. 10 27 19
Numerical results for Example 5.3
 Algorithm 3.1 Algorithm 1.1 Choice (i) CPU time (sec) 1.7859 5.1231 No of Iter. 11 23 Choice (ii) CPU time (sec) 1.4997 13.3981 No. of Iter. 13 27 Choice (iii) CPU time (sec) 2.6789 9.1093 No of Iter. 7 12 Choice (iv) CPU time (sec) 6.3222 24.5622 No of Iter. 11 24
 Algorithm 3.1 Algorithm 1.1 Choice (i) CPU time (sec) 1.7859 5.1231 No of Iter. 11 23 Choice (ii) CPU time (sec) 1.4997 13.3981 No. of Iter. 13 27 Choice (iii) CPU time (sec) 2.6789 9.1093 No of Iter. 7 12 Choice (iv) CPU time (sec) 6.3222 24.5622 No of Iter. 11 24
 [1] Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170 [2] Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020367 [3] Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $L^2-$norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 [4] Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105 [5] Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002 [6] Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178 [7] Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322 [8] Chaoqian Li, Yajun Liu, Yaotang Li. Note on $Z$-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129 [9] Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033 [10] José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 [11] Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 [12] Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185 [13] Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015 [14] George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 [15] Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1 [16] Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336 [17] Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021023 [18] Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331 [19] Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455 [20] Philippe Laurençot, Christoph Walker. Variational solutions to an evolution model for MEMS with heterogeneous dielectric properties. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 677-694. doi: 10.3934/dcdss.2020360

2019 Impact Factor: 1.366

## Tools

Article outline

Figures and Tables