-
Previous Article
Convergence analysis of a smoothing SAA method for a stochastic mathematical program with second-order cone complementarity constraints
- JIMO Home
- This Issue
-
Next Article
Tighter quadratically constrained convex reformulations for semi-continuous quadratic programming
Optimality results for a specific fractional problem
1. | LAMA, FSDM, Sidi Mohamed Ben Abdellah University, Fez, Morocco |
In this paper, one minimizes a fractional function over a compact set. Using an exact separation theorem, one gives necessary optimality conditions for strict optimal solutions in terms of Fréchet subdifferentials. All data are assumed locally Lipschitz.
References:
[1] |
A. Y. Kruger,
On Fréchet subdifferentials, Journal of Mathematical Sciences, 116 (2003), 3325-3358.
doi: 10.1023/A:1023673105317. |
[2] |
B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory, Grundlehren Series (Fundamental Principles of Mathematical Sciences) 330, Springer, Berlin, 2006. |
[3] |
B. S. Mordukhovich and Y. Shao,
Nonsmooth sequential analysis in Asplund spaces, Transactions of the American Mathematical Society, 348 (1996), 1235-1280.
doi: 10.1090/S0002-9947-96-01543-7. |
[4] |
B. S. Mordukhovich, N. M. Nam and N. D. Yen,
Fréchet subdifferential calculus and optimality conditions in nondifferentiable programming, Optimization, 55 (2006), 685-708.
doi: 10.1080/02331930600816395. |
[5] |
R. R. Phelps, Convex Functions, Monotone Operators and Differentiability, Springer-Verlag, Berlin, 1993. |
[6] |
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processe, Wiley, New York, 1962. |
[7] |
R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-642-02431-3. |
[8] |
X. Y. Zheng, Z. Yang and J. Zou,
Exact separation theorem for closed sets in Asplund spaces, Optimization, 66 (2017), 1065-1077.
doi: 10.1080/02331934.2017.1316503. |
show all references
References:
[1] |
A. Y. Kruger,
On Fréchet subdifferentials, Journal of Mathematical Sciences, 116 (2003), 3325-3358.
doi: 10.1023/A:1023673105317. |
[2] |
B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory, Grundlehren Series (Fundamental Principles of Mathematical Sciences) 330, Springer, Berlin, 2006. |
[3] |
B. S. Mordukhovich and Y. Shao,
Nonsmooth sequential analysis in Asplund spaces, Transactions of the American Mathematical Society, 348 (1996), 1235-1280.
doi: 10.1090/S0002-9947-96-01543-7. |
[4] |
B. S. Mordukhovich, N. M. Nam and N. D. Yen,
Fréchet subdifferential calculus and optimality conditions in nondifferentiable programming, Optimization, 55 (2006), 685-708.
doi: 10.1080/02331930600816395. |
[5] |
R. R. Phelps, Convex Functions, Monotone Operators and Differentiability, Springer-Verlag, Berlin, 1993. |
[6] |
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processe, Wiley, New York, 1962. |
[7] |
R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-642-02431-3. |
[8] |
X. Y. Zheng, Z. Yang and J. Zou,
Exact separation theorem for closed sets in Asplund spaces, Optimization, 66 (2017), 1065-1077.
doi: 10.1080/02331934.2017.1316503. |
[1] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[2] |
Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020045 |
[3] |
Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020046 |
[4] |
Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020053 |
[5] |
Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325 |
[6] |
Vadim Azhmyakov, Juan P. Fernández-Gutiérrez, Erik I. Verriest, Stefan W. Pickl. A separation based optimization approach to Dynamic Maximal Covering Location Problems with switched structure. Journal of Industrial & Management Optimization, 2021, 17 (2) : 669-686. doi: 10.3934/jimo.2019128 |
[7] |
Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020109 |
[8] |
Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 |
[9] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020374 |
[10] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[11] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001 |
[12] |
Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137 |
[13] |
Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 |
[14] |
Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213 |
[15] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021002 |
[16] |
Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020379 |
[17] |
Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292 |
[18] |
Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293 |
[19] |
Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318 |
[20] |
Yutong Chen, Jiabao Su. Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021007 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]