[1]
|
C. Abraham, P. A. Cornillon, E. Matzner-Løber and N. Molinari, Unsupervised curve clustering using B-splines, Scandinavian Journal of Statistics, 30 (2003), 581-595.
doi: 10.1111/1467-9469.00350.
|
[2]
|
S. Ahmadian, A. Norouzi-Fard, O. Svensson and J. Ward, Better guarantees for $k$-means and Euclidean $k$-median by primal-dual algorithms, SIAM Journal on Computing, (2019), FOCS17-97–FOCS17-156.
doi: 10.1137/18M1171321.
|
[3]
|
D. Aloise, A. Deshpande, P. Hansen and P. Popat, NP-hardness of Euclidean sum-of-squares clustering, Machine Learning, 75 (2009), 245-248.
doi: 10.1007/s10994-009-5103-0.
|
[4]
|
D. Arthur and S. Vassilvitskii, $K$-means++: The advantages of careful seeding, Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, (2007), 1027–1035.
|
[5]
|
M. Boullé, Functional data clustering via piecewise constant nonparametric density estimation, Pattern Recognition, 45 (2012), 4389-4401.
|
[6]
|
C. Bouveyron and C. Brunet-Saumard, Model-based clustering of high-dimensional data: A review, Computational Statistics & Data Analysis, 71 (2014), 52-78.
doi: 10.1016/j.csda.2012.12.008.
|
[7]
|
R. Gamasaee and M. Zarandi, A new dirichlet process for mining dynamic patterns in functional data, Information Sciences, 405 (2017), 55-80.
doi: 10.1016/j.ins.2017.04.008.
|
[8]
|
S. Har-Peled and B. Sadri, How fast is the $k$-means method?, Algorithmica, 41 (2005), 185-202.
doi: 10.1007/s00453-004-1127-9.
|
[9]
|
J. Jacques and C. Preda, Functional data clustering: A survey, Advances in Data Analysis and Classification, 8 (2014), 231-255.
doi: 10.1007/s11634-013-0158-y.
|
[10]
|
S. Ji, D. Xu, L. Guo, M. Li and D. Zhang, The seeding algorithm for spherical $k$-means clustering with penalties, Journal of Combinatorial Optimization, 2020.
doi: 10.1007/s10878-020-00569-1.
|
[11]
|
M. Kayano, K. Dozono and S. Konishi, Functional cluster analysis via orthonormalized Gaussian basis expansions and its application, Journal of Classification, 27 (2010), 211-230.
doi: 10.1007/s00357-010-9054-8.
|
[12]
|
M. Li, The bi-criteria seeding algorithms for two variants of $k$-means problem, Journal of Combinatorial Optimization, 2020.
doi: 10.1007/s10878-020-00537-9.
|
[13]
|
M. Li, D. Xu, J. Yue, D. Zhang and P. Zhang, The seeding algorithm for $k$-means problem with penalties, Journal of Combinatorial Optimization, 39 (2020), 15-32.
doi: 10.1007/s10878-019-00450-w.
|
[14]
|
S. Lloyd, Least squares quantization in PCM, IEEE Transactions on Information Theory, 28 (1982), 129-137.
doi: 10.1109/TIT.1982.1056489.
|
[15]
|
Y. Meng, J. Liang, F. Cao and Y. He, A new distance with derivative information for functional $k$-means clustering algorithm, Information Sciences, 463/464 (2018), 166-185.
doi: 10.1016/j.ins.2018.06.035.
|
[16]
|
R. Ostrovsky, Y. Rabani, L. Schulman and C. Swamy, The effectiveness of Lloyd-type methods for the $k$-means problem, Journal of the ACM, 59 (2012), 28: 1–28: 22.
doi: 10.1145/2395116.2395117.
|
[17]
|
G. Ozturk and M. Ciftci, Clustering based polyhedral conic functions algorithm in classification, Journal of Industrial & Management Optimization, 11 (2015), 921-932.
doi: 10.3934/jimo.2015.11.921.
|
[18]
|
J. Park and J. Ahn, Clustering multivariate functional data with phase variation, Biometrics, 73 (2017), 324-333.
doi: 10.1111/biom.12546.
|
[19]
|
J. Peng and H. G. Müller, Distance-based clustering of sparsely observed stochastic processes, with applications to online auctions, The Annals of Applied Statistics, 2 (2008), 1056-1077.
doi: 10.1214/08-AOAS172.
|
[20]
|
C. Preda, G. Saporta and C. Lévéder, PLS classification of functional data, Computational Statistics, 22 (2007), 223-235.
doi: 10.1007/s00180-007-0041-4.
|
[21]
|
T. Tarpey and K. K. Kinateder, Clustering functional data, Journal of Classification, 20 (2003), 93-114.
doi: 10.1007/s00357-003-0007-3.
|
[22]
|
D. Wei, A constant-factor bi-criteria approximation guarantee for $k$-means++, Proceedings of the Thirtieth International Conference on Neural Information Processing Systems, (2016), 604–612.
|
[23]
|
X. Wu, V. Kumar, J. Quinlan, J. Ross Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, P.S. Yu, Z. H. Zhou, M. Steinbach, D. J. Hand and D. Steinberg, Top 10 algorithms in data mining, Knowledge and Information Systems, 14 (2008), 1-37.
doi: 10.1007/s10115-007-0114-2.
|