• Previous Article
    Coordination of a supply chain with a loss-averse retailer under supply uncertainty and marketing effort
  • JIMO Home
  • This Issue
  • Next Article
    Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system
doi: 10.3934/jimo.2020161

Stability for semivectorial bilevel programs

1. 

School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing, 400067, China

2. 

School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China

3. 

School of Mathematics Science, Chongqing Normal University, Chongqing, 401331, China

*Corresponding author

Received  May 2020 Revised  August 2020 Published  November 2020

Fund Project: This work was supported by NSFC (No.11901068, 11701057); China Postdoctoral Science Foundation (2020M673167); Natural Science Foundation of Chongqing (cstc2019jcyj-msxmX0456); the Education Committee Project Foundation of Bayu Young Scholarthe Education Committee Project Foundation of Bayu Young Scholar; Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJQN201800810)

This paper studies the stability for bilevel program where the lower-level program is a multiobjective programming problem. As we know, the weakly efficient solution mapping for parametric multiobjective program is not generally lower semicontinuous. We first obtain this semicontinuity under a suitable assumption. Then, a new condition for the lower semicontinuity of the efficient solution mapping of this problem is also obtained. Finally, we get the continuities of the value functions and the solution set mapping for the upper-level problem based on the semicontinuities of solution mappings for the lower-level parametric multiobjective program.

Citation: Gaoxi Li, Liping Tang, Yingquan Huang, Xinmin Yang. Stability for semivectorial bilevel programs. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020161
References:
[1]

M. J. Alves and C. H. Antunes, A differential evolution algorithm to semivectorial bilevel problems, International Workshop on Machine Learning, Optimization, and Big Data. Springer, Cham, (2017), 172-185. doi: 10.1007/978-3-319-72926-8_15.  Google Scholar

[2]

M. J. Alves and C. H. Antunes, A semivectorial bilevel programming approach to optimize electricity dynamic time-of-use retail pricing, Computers and Operations Research, 92 (2018), 130-144.  doi: 10.1016/j.cor.2017.12.014.  Google Scholar

[3]

J. F. Bard, Practical Bilevel Optimization: Algorithms and Applications, Kluwer Academic Publishers, Dordrecht, 1998. doi: 10.1007/978-1-4757-2836-1.  Google Scholar

[4]

H. Bonnel and J. Morgan, Semivectorial bilevel optimization problem: Penalty approach, Journal of Optimization Theory and Applications, 131 (2006), 365-382.  doi: 10.1007/s10957-006-9150-4.  Google Scholar

[5]

H. Bonnel, Optimality conditions for the semivectorial bilevel optimization problem, Pacific Journal of Optimization, 2 (2006), 447-467.   Google Scholar

[6]

H. BonnelL. Todjihound$\acute{e}$ and C. Udrit$\acute{e}$., Semivectorial bilevel optimization on riemannian manifolds, Journal of Optimization Theory and Applications, 167 (2015), 464-486.  doi: 10.1007/s10957-015-0789-6.  Google Scholar

[7]

S. Dempe, Foundations of Bilevel Programming, Kluwer Academic Publishers, Dordrecht, 2002. doi: 10.1007/b101970.  Google Scholar

[8]

S. Dempe and P. Mehlitz, Semivectorial bilevel programming versus scalar bilevel programming, Optimization, 69 (2020), 657-679.  doi: 10.1080/02331934.2019.1625900.  Google Scholar

[9]

S. DempeN. Gadhi and A. B. Zemkoho., New optimality conditions for the semivectorial bilevel optimization problem, Journal of Optimization Theory and Applications, 157 (2013), 54-74.  doi: 10.1007/s10957-012-0161-z.  Google Scholar

[10]

G. Eichfelder, Multiobjective bilevel optimization, Mathematical Programming, 123 (2010), 419-449.  doi: 10.1007/s10107-008-0259-0.  Google Scholar

[11]

W. W Hogan, Point-to-set maps in mathematical programming, SIAM Review, 15 (1973), 591-603.  doi: 10.1137/1015073.  Google Scholar

[12]

G. LiZ. Wan and X. Zhao, Optimality conditions for bilevel optimization problem with both levels problems being multiobjective, Pacific Journal of Optimization, 13 (2017), 421-441.   Google Scholar

[13]

G. Li and Z. Wan, On bilevel programs with a convex lower-level problem violating slater's constraint qualification, Journal of Optimization Theory and Applications, 179 (2018), 820-837.  doi: 10.1007/s10957-018-1392-4.  Google Scholar

[14]

B. LiuZ. WanJ. Chen and G. Wang., Optimality conditions for pessimistic semivectorial bilevel programming problems, Journal of Inequalities and Applications, 2014 (2014), 1-26.  doi: 10.1186/1029-242X-2014-41.  Google Scholar

[15]

M. B. Lignola and J. Morgan, Topological existence and stability for stackelberg problems, Journal of Optimization Theory and Applications, 84 (1995), 145-169.  doi: 10.1007/BF02191740.  Google Scholar

[16]

Y. Lv and Z. Wan, Linear bilevel multiobjective optimization problem: penalty approach, Journal of Industrial and Management Optimization, 15 (2019), 1213-1223.  doi: 10.3934/jimo.2018092.  Google Scholar

[17]

Z. Y. PengJ. W. PengX. J. Long and J. C. Yao, On the stability of solutions for semi-infinite vector optimization problems, Journal of Global Optimization, 70 (2018), 55-69.  doi: 10.1007/s10898-017-0553-6.  Google Scholar

[18]

T. Tanino, Stability and sensitivity analysis in multiobjective nonlinear programming, Annals of Operations Research, 27 (1990), 97-114.  doi: 10.1007/BF02055192.  Google Scholar

[19]

T. Tanino and Y. Sawaragi, Stability of nondominated solutions in multicriteria decision-making, Journal of Optimization Theory and Applications, 30 (1980), 229-253.  doi: 10.1007/BF00934497.  Google Scholar

[20]

G. WangX. WangZ. Wan and Y. Lv, A globally convergent algorithm for a class of bilevel nonlinear programming problem, Applied Mathematics and Computation, 188 (2007), 166-172.  doi: 10.1016/j.amc.2006.09.130.  Google Scholar

[21]

Y.-B. XiaoT. N. Van and J.-C. Yao, Locally Lipschitz vector optimization problems: second-order constraint qualifications, regularity condition and KKT necessary optimality conditions, Positivity, 24 (2020), 313-337.  doi: 10.1007/s11117-019-00679-z.  Google Scholar

[22]

J. J. YeD. Zhu and Q. Zhu, Exact penalization and necessary optimality conditions for generalized bilevel programming problems, SIAM Journal on Optimization, 7 (1997), 481-507.  doi: 10.1137/S1052623493257344.  Google Scholar

[23]

J. J. Ye, Nondifferentiable multiplier rules for optimization and bilevel optimization problems, SIAM Journal on Optimization, 15 (2004), 252-274.  doi: 10.1137/S1052623403424193.  Google Scholar

[24]

J. Yu, Essential weak efficient solution in multiobjective optimization problems, Journal of Mathematical Analysis and Applications, 166 (1992), 230-235.  doi: 10.1016/0022-247X(92)90338-E.  Google Scholar

[25]

J. Zhao, The lower semicontinuity of optimal solution sets, Journal of Mathematical Analysis and Applications, 207 (1997), 240-254.  doi: 10.1006/jmaa.1997.5288.  Google Scholar

[26]

Y. ZhengD. Fang and Z. Wan, A solution approach to the weak linear bilevel programming problems, Optimization, 65 (2016), 1437-1449.  doi: 10.1080/02331934.2016.1154553.  Google Scholar

[27]

Y. Zheng and Z. Wan, A solution method for semivectorial bilevel programming problem via penalty method, Journal of Applied Mathematics and Computing, 37 (2011), 207-219.  doi: 10.1007/s12190-010-0430-7.  Google Scholar

[28]

Y. ZhengZ. WanS. Jia and G. Wang, A new method for strong-weak linear bilevel programming problem, Journal of Industrial and Management Optimization, 11 (2015), 529-547.  doi: 10.3934/jimo.2015.11.529.  Google Scholar

show all references

References:
[1]

M. J. Alves and C. H. Antunes, A differential evolution algorithm to semivectorial bilevel problems, International Workshop on Machine Learning, Optimization, and Big Data. Springer, Cham, (2017), 172-185. doi: 10.1007/978-3-319-72926-8_15.  Google Scholar

[2]

M. J. Alves and C. H. Antunes, A semivectorial bilevel programming approach to optimize electricity dynamic time-of-use retail pricing, Computers and Operations Research, 92 (2018), 130-144.  doi: 10.1016/j.cor.2017.12.014.  Google Scholar

[3]

J. F. Bard, Practical Bilevel Optimization: Algorithms and Applications, Kluwer Academic Publishers, Dordrecht, 1998. doi: 10.1007/978-1-4757-2836-1.  Google Scholar

[4]

H. Bonnel and J. Morgan, Semivectorial bilevel optimization problem: Penalty approach, Journal of Optimization Theory and Applications, 131 (2006), 365-382.  doi: 10.1007/s10957-006-9150-4.  Google Scholar

[5]

H. Bonnel, Optimality conditions for the semivectorial bilevel optimization problem, Pacific Journal of Optimization, 2 (2006), 447-467.   Google Scholar

[6]

H. BonnelL. Todjihound$\acute{e}$ and C. Udrit$\acute{e}$., Semivectorial bilevel optimization on riemannian manifolds, Journal of Optimization Theory and Applications, 167 (2015), 464-486.  doi: 10.1007/s10957-015-0789-6.  Google Scholar

[7]

S. Dempe, Foundations of Bilevel Programming, Kluwer Academic Publishers, Dordrecht, 2002. doi: 10.1007/b101970.  Google Scholar

[8]

S. Dempe and P. Mehlitz, Semivectorial bilevel programming versus scalar bilevel programming, Optimization, 69 (2020), 657-679.  doi: 10.1080/02331934.2019.1625900.  Google Scholar

[9]

S. DempeN. Gadhi and A. B. Zemkoho., New optimality conditions for the semivectorial bilevel optimization problem, Journal of Optimization Theory and Applications, 157 (2013), 54-74.  doi: 10.1007/s10957-012-0161-z.  Google Scholar

[10]

G. Eichfelder, Multiobjective bilevel optimization, Mathematical Programming, 123 (2010), 419-449.  doi: 10.1007/s10107-008-0259-0.  Google Scholar

[11]

W. W Hogan, Point-to-set maps in mathematical programming, SIAM Review, 15 (1973), 591-603.  doi: 10.1137/1015073.  Google Scholar

[12]

G. LiZ. Wan and X. Zhao, Optimality conditions for bilevel optimization problem with both levels problems being multiobjective, Pacific Journal of Optimization, 13 (2017), 421-441.   Google Scholar

[13]

G. Li and Z. Wan, On bilevel programs with a convex lower-level problem violating slater's constraint qualification, Journal of Optimization Theory and Applications, 179 (2018), 820-837.  doi: 10.1007/s10957-018-1392-4.  Google Scholar

[14]

B. LiuZ. WanJ. Chen and G. Wang., Optimality conditions for pessimistic semivectorial bilevel programming problems, Journal of Inequalities and Applications, 2014 (2014), 1-26.  doi: 10.1186/1029-242X-2014-41.  Google Scholar

[15]

M. B. Lignola and J. Morgan, Topological existence and stability for stackelberg problems, Journal of Optimization Theory and Applications, 84 (1995), 145-169.  doi: 10.1007/BF02191740.  Google Scholar

[16]

Y. Lv and Z. Wan, Linear bilevel multiobjective optimization problem: penalty approach, Journal of Industrial and Management Optimization, 15 (2019), 1213-1223.  doi: 10.3934/jimo.2018092.  Google Scholar

[17]

Z. Y. PengJ. W. PengX. J. Long and J. C. Yao, On the stability of solutions for semi-infinite vector optimization problems, Journal of Global Optimization, 70 (2018), 55-69.  doi: 10.1007/s10898-017-0553-6.  Google Scholar

[18]

T. Tanino, Stability and sensitivity analysis in multiobjective nonlinear programming, Annals of Operations Research, 27 (1990), 97-114.  doi: 10.1007/BF02055192.  Google Scholar

[19]

T. Tanino and Y. Sawaragi, Stability of nondominated solutions in multicriteria decision-making, Journal of Optimization Theory and Applications, 30 (1980), 229-253.  doi: 10.1007/BF00934497.  Google Scholar

[20]

G. WangX. WangZ. Wan and Y. Lv, A globally convergent algorithm for a class of bilevel nonlinear programming problem, Applied Mathematics and Computation, 188 (2007), 166-172.  doi: 10.1016/j.amc.2006.09.130.  Google Scholar

[21]

Y.-B. XiaoT. N. Van and J.-C. Yao, Locally Lipschitz vector optimization problems: second-order constraint qualifications, regularity condition and KKT necessary optimality conditions, Positivity, 24 (2020), 313-337.  doi: 10.1007/s11117-019-00679-z.  Google Scholar

[22]

J. J. YeD. Zhu and Q. Zhu, Exact penalization and necessary optimality conditions for generalized bilevel programming problems, SIAM Journal on Optimization, 7 (1997), 481-507.  doi: 10.1137/S1052623493257344.  Google Scholar

[23]

J. J. Ye, Nondifferentiable multiplier rules for optimization and bilevel optimization problems, SIAM Journal on Optimization, 15 (2004), 252-274.  doi: 10.1137/S1052623403424193.  Google Scholar

[24]

J. Yu, Essential weak efficient solution in multiobjective optimization problems, Journal of Mathematical Analysis and Applications, 166 (1992), 230-235.  doi: 10.1016/0022-247X(92)90338-E.  Google Scholar

[25]

J. Zhao, The lower semicontinuity of optimal solution sets, Journal of Mathematical Analysis and Applications, 207 (1997), 240-254.  doi: 10.1006/jmaa.1997.5288.  Google Scholar

[26]

Y. ZhengD. Fang and Z. Wan, A solution approach to the weak linear bilevel programming problems, Optimization, 65 (2016), 1437-1449.  doi: 10.1080/02331934.2016.1154553.  Google Scholar

[27]

Y. Zheng and Z. Wan, A solution method for semivectorial bilevel programming problem via penalty method, Journal of Applied Mathematics and Computing, 37 (2011), 207-219.  doi: 10.1007/s12190-010-0430-7.  Google Scholar

[28]

Y. ZhengZ. WanS. Jia and G. Wang, A new method for strong-weak linear bilevel programming problem, Journal of Industrial and Management Optimization, 11 (2015), 529-547.  doi: 10.3934/jimo.2015.11.529.  Google Scholar

[1]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[2]

Li Chu, Bo Wang, Jie Zhang, Hong-Wei Zhang. Convergence analysis of a smoothing SAA method for a stochastic mathematical program with second-order cone complementarity constraints. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1863-1886. doi: 10.3934/jimo.2020050

[3]

Melis Alpaslan Takan, Refail Kasimbeyli. Multiobjective mathematical models and solution approaches for heterogeneous fixed fleet vehicle routing problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2073-2095. doi: 10.3934/jimo.2020059

[4]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015

[5]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[6]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[7]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[8]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[9]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[10]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[11]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[12]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[13]

Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021068

[14]

Yongjian Liu, Qiujian Huang, Zhouchao Wei. Dynamics at infinity and Jacobi stability of trajectories for the Yang-Chen system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3357-3380. doi: 10.3934/dcdsb.2020235

[15]

Akio Matsumoto, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021069

[16]

Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049

[17]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

[18]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

[19]

Jianxun Liu, Shengjie Li, Yingrang Xu. Quantitative stability of the ERM formulation for a class of stochastic linear variational inequalities. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021083

[20]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (43)
  • HTML views (168)
  • Cited by (0)

Other articles
by authors

[Back to Top]