• Previous Article
    Coordination of a supply chain with a loss-averse retailer under supply uncertainty and marketing effort
  • JIMO Home
  • This Issue
  • Next Article
    Solving fuzzy linear fractional set covering problem by a goal programming based solution approach
doi: 10.3934/jimo.2020161

Stability for semivectorial bilevel programs

1. 

School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing, 400067, China

2. 

School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China

3. 

School of Mathematics Science, Chongqing Normal University, Chongqing, 401331, China

*Corresponding author

Received  May 2020 Revised  August 2020 Published  November 2020

Fund Project: This work was supported by NSFC (No.11901068, 11701057); China Postdoctoral Science Foundation (2020M673167); Natural Science Foundation of Chongqing (cstc2019jcyj-msxmX0456); the Education Committee Project Foundation of Bayu Young Scholarthe Education Committee Project Foundation of Bayu Young Scholar; Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJQN201800810)

This paper studies the stability for bilevel program where the lower-level program is a multiobjective programming problem. As we know, the weakly efficient solution mapping for parametric multiobjective program is not generally lower semicontinuous. We first obtain this semicontinuity under a suitable assumption. Then, a new condition for the lower semicontinuity of the efficient solution mapping of this problem is also obtained. Finally, we get the continuities of the value functions and the solution set mapping for the upper-level problem based on the semicontinuities of solution mappings for the lower-level parametric multiobjective program.

Citation: Gaoxi Li, Liping Tang, Yingquan Huang, Xinmin Yang. Stability for semivectorial bilevel programs. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020161
References:
[1]

M. J. Alves and C. H. Antunes, A differential evolution algorithm to semivectorial bilevel problems, International Workshop on Machine Learning, Optimization, and Big Data. Springer, Cham, (2017), 172-185. doi: 10.1007/978-3-319-72926-8_15.  Google Scholar

[2]

M. J. Alves and C. H. Antunes, A semivectorial bilevel programming approach to optimize electricity dynamic time-of-use retail pricing, Computers and Operations Research, 92 (2018), 130-144.  doi: 10.1016/j.cor.2017.12.014.  Google Scholar

[3]

J. F. Bard, Practical Bilevel Optimization: Algorithms and Applications, Kluwer Academic Publishers, Dordrecht, 1998. doi: 10.1007/978-1-4757-2836-1.  Google Scholar

[4]

H. Bonnel and J. Morgan, Semivectorial bilevel optimization problem: Penalty approach, Journal of Optimization Theory and Applications, 131 (2006), 365-382.  doi: 10.1007/s10957-006-9150-4.  Google Scholar

[5]

H. Bonnel, Optimality conditions for the semivectorial bilevel optimization problem, Pacific Journal of Optimization, 2 (2006), 447-467.   Google Scholar

[6]

H. BonnelL. Todjihound$\acute{e}$ and C. Udrit$\acute{e}$., Semivectorial bilevel optimization on riemannian manifolds, Journal of Optimization Theory and Applications, 167 (2015), 464-486.  doi: 10.1007/s10957-015-0789-6.  Google Scholar

[7]

S. Dempe, Foundations of Bilevel Programming, Kluwer Academic Publishers, Dordrecht, 2002. doi: 10.1007/b101970.  Google Scholar

[8]

S. Dempe and P. Mehlitz, Semivectorial bilevel programming versus scalar bilevel programming, Optimization, 69 (2020), 657-679.  doi: 10.1080/02331934.2019.1625900.  Google Scholar

[9]

S. DempeN. Gadhi and A. B. Zemkoho., New optimality conditions for the semivectorial bilevel optimization problem, Journal of Optimization Theory and Applications, 157 (2013), 54-74.  doi: 10.1007/s10957-012-0161-z.  Google Scholar

[10]

G. Eichfelder, Multiobjective bilevel optimization, Mathematical Programming, 123 (2010), 419-449.  doi: 10.1007/s10107-008-0259-0.  Google Scholar

[11]

W. W Hogan, Point-to-set maps in mathematical programming, SIAM Review, 15 (1973), 591-603.  doi: 10.1137/1015073.  Google Scholar

[12]

G. LiZ. Wan and X. Zhao, Optimality conditions for bilevel optimization problem with both levels problems being multiobjective, Pacific Journal of Optimization, 13 (2017), 421-441.   Google Scholar

[13]

G. Li and Z. Wan, On bilevel programs with a convex lower-level problem violating slater's constraint qualification, Journal of Optimization Theory and Applications, 179 (2018), 820-837.  doi: 10.1007/s10957-018-1392-4.  Google Scholar

[14]

B. LiuZ. WanJ. Chen and G. Wang., Optimality conditions for pessimistic semivectorial bilevel programming problems, Journal of Inequalities and Applications, 2014 (2014), 1-26.  doi: 10.1186/1029-242X-2014-41.  Google Scholar

[15]

M. B. Lignola and J. Morgan, Topological existence and stability for stackelberg problems, Journal of Optimization Theory and Applications, 84 (1995), 145-169.  doi: 10.1007/BF02191740.  Google Scholar

[16]

Y. Lv and Z. Wan, Linear bilevel multiobjective optimization problem: penalty approach, Journal of Industrial and Management Optimization, 15 (2019), 1213-1223.  doi: 10.3934/jimo.2018092.  Google Scholar

[17]

Z. Y. PengJ. W. PengX. J. Long and J. C. Yao, On the stability of solutions for semi-infinite vector optimization problems, Journal of Global Optimization, 70 (2018), 55-69.  doi: 10.1007/s10898-017-0553-6.  Google Scholar

[18]

T. Tanino, Stability and sensitivity analysis in multiobjective nonlinear programming, Annals of Operations Research, 27 (1990), 97-114.  doi: 10.1007/BF02055192.  Google Scholar

[19]

T. Tanino and Y. Sawaragi, Stability of nondominated solutions in multicriteria decision-making, Journal of Optimization Theory and Applications, 30 (1980), 229-253.  doi: 10.1007/BF00934497.  Google Scholar

[20]

G. WangX. WangZ. Wan and Y. Lv, A globally convergent algorithm for a class of bilevel nonlinear programming problem, Applied Mathematics and Computation, 188 (2007), 166-172.  doi: 10.1016/j.amc.2006.09.130.  Google Scholar

[21]

Y.-B. XiaoT. N. Van and J.-C. Yao, Locally Lipschitz vector optimization problems: second-order constraint qualifications, regularity condition and KKT necessary optimality conditions, Positivity, 24 (2020), 313-337.  doi: 10.1007/s11117-019-00679-z.  Google Scholar

[22]

J. J. YeD. Zhu and Q. Zhu, Exact penalization and necessary optimality conditions for generalized bilevel programming problems, SIAM Journal on Optimization, 7 (1997), 481-507.  doi: 10.1137/S1052623493257344.  Google Scholar

[23]

J. J. Ye, Nondifferentiable multiplier rules for optimization and bilevel optimization problems, SIAM Journal on Optimization, 15 (2004), 252-274.  doi: 10.1137/S1052623403424193.  Google Scholar

[24]

J. Yu, Essential weak efficient solution in multiobjective optimization problems, Journal of Mathematical Analysis and Applications, 166 (1992), 230-235.  doi: 10.1016/0022-247X(92)90338-E.  Google Scholar

[25]

J. Zhao, The lower semicontinuity of optimal solution sets, Journal of Mathematical Analysis and Applications, 207 (1997), 240-254.  doi: 10.1006/jmaa.1997.5288.  Google Scholar

[26]

Y. ZhengD. Fang and Z. Wan, A solution approach to the weak linear bilevel programming problems, Optimization, 65 (2016), 1437-1449.  doi: 10.1080/02331934.2016.1154553.  Google Scholar

[27]

Y. Zheng and Z. Wan, A solution method for semivectorial bilevel programming problem via penalty method, Journal of Applied Mathematics and Computing, 37 (2011), 207-219.  doi: 10.1007/s12190-010-0430-7.  Google Scholar

[28]

Y. ZhengZ. WanS. Jia and G. Wang, A new method for strong-weak linear bilevel programming problem, Journal of Industrial and Management Optimization, 11 (2015), 529-547.  doi: 10.3934/jimo.2015.11.529.  Google Scholar

show all references

References:
[1]

M. J. Alves and C. H. Antunes, A differential evolution algorithm to semivectorial bilevel problems, International Workshop on Machine Learning, Optimization, and Big Data. Springer, Cham, (2017), 172-185. doi: 10.1007/978-3-319-72926-8_15.  Google Scholar

[2]

M. J. Alves and C. H. Antunes, A semivectorial bilevel programming approach to optimize electricity dynamic time-of-use retail pricing, Computers and Operations Research, 92 (2018), 130-144.  doi: 10.1016/j.cor.2017.12.014.  Google Scholar

[3]

J. F. Bard, Practical Bilevel Optimization: Algorithms and Applications, Kluwer Academic Publishers, Dordrecht, 1998. doi: 10.1007/978-1-4757-2836-1.  Google Scholar

[4]

H. Bonnel and J. Morgan, Semivectorial bilevel optimization problem: Penalty approach, Journal of Optimization Theory and Applications, 131 (2006), 365-382.  doi: 10.1007/s10957-006-9150-4.  Google Scholar

[5]

H. Bonnel, Optimality conditions for the semivectorial bilevel optimization problem, Pacific Journal of Optimization, 2 (2006), 447-467.   Google Scholar

[6]

H. BonnelL. Todjihound$\acute{e}$ and C. Udrit$\acute{e}$., Semivectorial bilevel optimization on riemannian manifolds, Journal of Optimization Theory and Applications, 167 (2015), 464-486.  doi: 10.1007/s10957-015-0789-6.  Google Scholar

[7]

S. Dempe, Foundations of Bilevel Programming, Kluwer Academic Publishers, Dordrecht, 2002. doi: 10.1007/b101970.  Google Scholar

[8]

S. Dempe and P. Mehlitz, Semivectorial bilevel programming versus scalar bilevel programming, Optimization, 69 (2020), 657-679.  doi: 10.1080/02331934.2019.1625900.  Google Scholar

[9]

S. DempeN. Gadhi and A. B. Zemkoho., New optimality conditions for the semivectorial bilevel optimization problem, Journal of Optimization Theory and Applications, 157 (2013), 54-74.  doi: 10.1007/s10957-012-0161-z.  Google Scholar

[10]

G. Eichfelder, Multiobjective bilevel optimization, Mathematical Programming, 123 (2010), 419-449.  doi: 10.1007/s10107-008-0259-0.  Google Scholar

[11]

W. W Hogan, Point-to-set maps in mathematical programming, SIAM Review, 15 (1973), 591-603.  doi: 10.1137/1015073.  Google Scholar

[12]

G. LiZ. Wan and X. Zhao, Optimality conditions for bilevel optimization problem with both levels problems being multiobjective, Pacific Journal of Optimization, 13 (2017), 421-441.   Google Scholar

[13]

G. Li and Z. Wan, On bilevel programs with a convex lower-level problem violating slater's constraint qualification, Journal of Optimization Theory and Applications, 179 (2018), 820-837.  doi: 10.1007/s10957-018-1392-4.  Google Scholar

[14]

B. LiuZ. WanJ. Chen and G. Wang., Optimality conditions for pessimistic semivectorial bilevel programming problems, Journal of Inequalities and Applications, 2014 (2014), 1-26.  doi: 10.1186/1029-242X-2014-41.  Google Scholar

[15]

M. B. Lignola and J. Morgan, Topological existence and stability for stackelberg problems, Journal of Optimization Theory and Applications, 84 (1995), 145-169.  doi: 10.1007/BF02191740.  Google Scholar

[16]

Y. Lv and Z. Wan, Linear bilevel multiobjective optimization problem: penalty approach, Journal of Industrial and Management Optimization, 15 (2019), 1213-1223.  doi: 10.3934/jimo.2018092.  Google Scholar

[17]

Z. Y. PengJ. W. PengX. J. Long and J. C. Yao, On the stability of solutions for semi-infinite vector optimization problems, Journal of Global Optimization, 70 (2018), 55-69.  doi: 10.1007/s10898-017-0553-6.  Google Scholar

[18]

T. Tanino, Stability and sensitivity analysis in multiobjective nonlinear programming, Annals of Operations Research, 27 (1990), 97-114.  doi: 10.1007/BF02055192.  Google Scholar

[19]

T. Tanino and Y. Sawaragi, Stability of nondominated solutions in multicriteria decision-making, Journal of Optimization Theory and Applications, 30 (1980), 229-253.  doi: 10.1007/BF00934497.  Google Scholar

[20]

G. WangX. WangZ. Wan and Y. Lv, A globally convergent algorithm for a class of bilevel nonlinear programming problem, Applied Mathematics and Computation, 188 (2007), 166-172.  doi: 10.1016/j.amc.2006.09.130.  Google Scholar

[21]

Y.-B. XiaoT. N. Van and J.-C. Yao, Locally Lipschitz vector optimization problems: second-order constraint qualifications, regularity condition and KKT necessary optimality conditions, Positivity, 24 (2020), 313-337.  doi: 10.1007/s11117-019-00679-z.  Google Scholar

[22]

J. J. YeD. Zhu and Q. Zhu, Exact penalization and necessary optimality conditions for generalized bilevel programming problems, SIAM Journal on Optimization, 7 (1997), 481-507.  doi: 10.1137/S1052623493257344.  Google Scholar

[23]

J. J. Ye, Nondifferentiable multiplier rules for optimization and bilevel optimization problems, SIAM Journal on Optimization, 15 (2004), 252-274.  doi: 10.1137/S1052623403424193.  Google Scholar

[24]

J. Yu, Essential weak efficient solution in multiobjective optimization problems, Journal of Mathematical Analysis and Applications, 166 (1992), 230-235.  doi: 10.1016/0022-247X(92)90338-E.  Google Scholar

[25]

J. Zhao, The lower semicontinuity of optimal solution sets, Journal of Mathematical Analysis and Applications, 207 (1997), 240-254.  doi: 10.1006/jmaa.1997.5288.  Google Scholar

[26]

Y. ZhengD. Fang and Z. Wan, A solution approach to the weak linear bilevel programming problems, Optimization, 65 (2016), 1437-1449.  doi: 10.1080/02331934.2016.1154553.  Google Scholar

[27]

Y. Zheng and Z. Wan, A solution method for semivectorial bilevel programming problem via penalty method, Journal of Applied Mathematics and Computing, 37 (2011), 207-219.  doi: 10.1007/s12190-010-0430-7.  Google Scholar

[28]

Y. ZhengZ. WanS. Jia and G. Wang, A new method for strong-weak linear bilevel programming problem, Journal of Industrial and Management Optimization, 11 (2015), 529-547.  doi: 10.3934/jimo.2015.11.529.  Google Scholar

[1]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[2]

Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[3]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[4]

Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320

[5]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[6]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[7]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[8]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[9]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[10]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

[11]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[12]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[13]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[14]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

[15]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[16]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[17]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[18]

Tomáš Smejkal, Jiří Mikyška, Jaromír Kukal. Comparison of modern heuristics on solving the phase stability testing problem. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1161-1180. doi: 10.3934/dcdss.2020227

[19]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[20]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

2019 Impact Factor: 1.366

Article outline

[Back to Top]