• Previous Article
    Stability for semivectorial bilevel programs
  • JIMO Home
  • This Issue
  • Next Article
    A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project
doi: 10.3934/jimo.2020162

Solving fuzzy linear fractional set covering problem by a goal programming based solution approach

1. 

Department of Mathematics, Masjed-Soleiman Branch, Islamic Azad University, Masjed-Soleiman, Iran

2. 

School of Mathematics, Thapar Institute of Engineering & Technology (Deemed University), Patiala-147004, Punjab, India

3. 

Department of Industrial Engineering, Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

*Corresponding author: Harish Garg

Received  May 2020 Revised  August 2020 Published  December 2020

In this paper, a fuzzy linear fractional set covering problem is solved. The non-linearity of the objective function of the problem as well as its fuzziness make it difficult and complex to be solved effectively. To overcome these difficulties, using the concepts of fuzzy theory and component-wise optimization, the problem is converted to a crisp multi-objective non-linear problem. In order to tackle the obtained multi-objective non-linear problem, a goal programming based solution approach is proposed for its Pareto-optimal solution. The non-linearity of the problem is linearized by applying some linearization techniques in the procedure of the goal programming approach. The obtained Pareto-optimal solution is also a solution of the initial fuzzy linear fractional set covering problem. As advantage, the proposed approach applies no ranking function of fuzzy numbers and its goal programming stage considers no preferences from decision maker. The computational experiments provided by some examples of the literature show the superiority of the proposed approach over the existing approaches of the literature.

Citation: Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020162
References:
[1]

M. Akram, A. Bashir and H. Garg, Decision-making model under complex picture fuzzy Hamacher aggregation operators, Computational and Applied Mathematics, 39 (2020), Paper No. 226, 38 pp. doi: 10.1007/s40314-020-01251-2.  Google Scholar

[2]

M. Akram, G. Muhammad and T. Allahviranloo, Bipolar fuzzy linear system of equations,, Computational and Applied Mathematics, 38 (2019a), Paper No. 69, 29 pp. doi: 10.1007/s40314-019-0814-8.  Google Scholar

[3]

M. AkramD. Saleem and T. Allahviranloo, Linear system of equations in m-polar fuzzy environment, Journal of Intelligent & Fuzzy Systems, 37 (2019), 8251-8266.  doi: 10.3233/JIFS-190744.  Google Scholar

[4]

M. Arana-Jimz, Nondominated solutions in a fully fuzzy linear programming problem, Mathematical Methods in the Applied Sciences, 41 (2018), 7421-7430.  doi: 10.1002/mma.4882.  Google Scholar

[5]

E. Cakita and W. Karwowskib, A fuzzy overlay model for mapping adverse event risk in an active war theatre, Journal of Experimental & Theoretical Artificial Intelligence, 30 (2018), 691-701.  doi: 10.1080/0952813X.2018.1467494.  Google Scholar

[6]

A. Charnes and W. W. Cooper, Programming with Linear Fractional Functionals, Naval Research Logistics Quarterly, 9 (1962), 181-186.  doi: 10.1002/nav.3800090303.  Google Scholar

[7]

T. P. Dao and S. C. Huang, Design and multi-objective optimization for a broad self-amplified 2-DOF monolithic mechanism, Sadhana, 42 (2017), 1527-1542.  doi: 10.1007/s12046-017-0714-9.  Google Scholar

[8]

W. A. De OliveiraM. A. Rojas-MedarA. Beato-Moreno and M. B. Hernez-Jimz, Necessary and sufficient conditions for achieving global optimal solutions in multiobjective quadratic fractional optimization problems, Journal of Global Optimization, 74 (2019), 233-253.  doi: 10.1007/s10898-019-00766-1.  Google Scholar

[9]

J. Frenk and S. Schaible, Fractional Programming, Handbook of Generalized Convexity and Generalized Monotonicity, In: N. Hadjisavvas, S. Komlosi, S. Schaible, editors, Nonconvex Optimization and its Applications, , Springer-Verlag, Berlin, 2005. Google Scholar

[10]

H. Garg, Exponential operational laws and new aggregation operators for intuitionistic multiplicative set in multiple-attribute group decision making process, Information Sciences, 538 (2020), 245-272.  doi: 10.1016/j.ins.2020.05.095.  Google Scholar

[11]

H. Garg, Linguistic interval-valued Pythagorean fuzzy sets and their application to multiple attribute group decision-making process, Cognitive Computation, 12 (2020), 1313-1337.  doi: 10.1007/s12559-020-09750-4.  Google Scholar

[12]

H. Garg, Neutrality operations-based Pythagorean fuzzy aggregation operators and its applications to multiple attribute group decision-making process, Journal of Ambient Intelligence and Humanized Computing, 11 (2020), 3021-3041.  doi: 10.1007/s12652-019-01448-2.  Google Scholar

[13]

P. Gupta and M. K. Mehlawat, A new possibilistic programming approach for solving fuzzy multiobjective assignment problem, IEEE Transactions on Fuzzy Systems, 22 (2014), 16-34.  doi: 10.1109/TFUZZ.2013.2245134.  Google Scholar

[14]

R. Gupta and R. R. Saxena, Fuzzy linear fractional set covering problem with imprecise costs, Rairo Operations Research, 48 (2014), 415-427.  doi: 10.1051/ro/2014015.  Google Scholar

[15]

J. Li and R. S. K. Kwan, A meta-heuristic with orthogonal experiment for the set covering problem, Journal of Mathematical Modelling and Algorithms, 3 (2004), 263-283.  doi: 10.1023/B:JMMA.0000038619.69509.bf.  Google Scholar

[16]

A. MahmoodiradT. Allahviranloo and S. Niroomand, A new effective solution method for fully intuitionistic fuzzy transportation problem, Soft Computing, 23 (2019), 4521-4530.  doi: 10.1007/s00500-018-3115-z.  Google Scholar

[17]

A. Mahmoodirad and S. Niroomand, Uncertain location-allocation decisions for a bi-objective two-stage supply chain network design problem with environmental impacts, Expert Systems, 37 (2020), e12558. doi: 10.1111/exsy.12558.  Google Scholar

[18]

A. MahmoodiradS. NiroomandN. Mirzaei and A. Shoja, Fuzzy fractional minimal cost flow problem, International Journal of Fuzzy Systems, 20 (2018), 174-186.  doi: 10.1007/s40815-017-0293-2.  Google Scholar

[19]

A. MahmoodiradS. Niroomand and M. Shafiee, A closed loop supply chain network design problem with multi-mode demand satisfaction in fuzzy environment, Journal of Intelligent & Fuzzy Systems, 39 (2020), 503-524.  doi: 10.3233/JIFS-191528.  Google Scholar

[20]

M. Moula and A. Mekhilef, Quadratic optimization over a discrete pareto set of a multi-objective linear fractional program, Optimization, 2020. doi: 10.1080/02331934.2020.1730834.  Google Scholar

[21]

S. NiroomandA. BazyarM. Alborzi and A. Mahmoodirad, A hybrid approach for multi-criteria emergency center location problem considering existing emergency centers with interval type data: A case study, Journal of Ambient Intelligence and Humanized Computing, 9 (2018), 1999-2008.   Google Scholar

[22]

S. Niroomand, H. Garg and A. Mahmoodirad, An intuitionistic fuzzy two stage supply chain network design problem with multi-mode demand and multi-mode transportation, ISA Transactions, 2020. doi: 10.1016/j.isatra.2020.07.033.  Google Scholar

[23]

S. NiroomandA. Hadi-VenchehN. Mirzaei and S. Molla-Alizadeh-Zavardehi, Hybrid greedy algorithms for fuzzy tardiness/earliness minimisation in a special single machine scheduling problem: case study and generalisation, International Journal of Computer Integrated Manufacturing, 29 (2016), 870-888.   Google Scholar

[24]

S. Niroomand, A. Mahmoodirad and S. Mosallaeipour, A hybrid solution approach for fuzzy multiobjective dual supplier and material selection problem of carton box production systems, Expert Systems, 36 (2019), e12341. Google Scholar

[25]

D. RaniT. R. Gulati and H. Garg, Multi-objective non - linear programming problem in intuitionistic fuzzy environment: Optimistic and pessimistic view point, Expert Systems with Applications, 64 (2016), 228-238.  doi: 10.1016/j.eswa.2016.07.034.  Google Scholar

[26]

R. Sahraeian and M. S. Kazemi, A fuzzy set covering-clustering algorithm for facility location problem, IEEE International Conference on Industrial Engineering Management, (2011), 1098–1102. Google Scholar

[27]

M. SaneiA. Mahmoodirad and S. Niroomand, Two-stage supply chain network design problem with interval data, International Journal of e-Navigation and Maritime Economy, 5 (2016), 74-84.  doi: 10.1016/j.enavi.2016.12.006.  Google Scholar

[28]

R. R. Saxena and S. R. Arora, A linearization technique for solving the quadratic set covering problem, Optimization, 39 (1997), 35-42.  doi: 10.1080/02331939708844269.  Google Scholar

[29]

R. R. Saxena and R. Gupta, Enumeration technique for solving linear fractional fuzzy set covering problem, International Journal of Pure and Applied Mathematics, 84 (2013), 477-496.  doi: 10.12732/ijpam.v84i5.3.  Google Scholar

[30]

S. Schaible and J. Shi, Fractional programming: The sum-of-ratios case, Optimization Methods and Software, 18 (2003), 219-229.  doi: 10.1080/1055678031000105242.  Google Scholar

[31]

S. Schaible, A note on the sum of a linear and linear-fractional function, Naval Research Logistics Quarterly, 24 (1977), 691-693.   Google Scholar

[32]

H. Shavandi and H. Mahlooji, Fuzzy hierarchical queueing models for the location set covering problem in congested systems, Scientia Iranica, 15 (2008), 378-388.   Google Scholar

[33]

R. H. WaliaU. MishraH. Garg and H. P. Umap, A nonlinear programming approach to solve the stochastic multi-objective inventory model using the uncertain information, Arabian Journal for Science and Engineering, 45 (2020), 6963-6973.   Google Scholar

[34]

Z. Yang, H. Garg, J. Li, G. Srivastava and Z. Cao, Investigation of multiple heterogeneous relationships using a Q-order neighbor pair fuzzy multi-criteria decision algorithm, Neural Computing and Applications, (2020). doi: 10.1007/s00521-020-05003-5.  Google Scholar

[35]

D. Yousri M. Abd Elaziz S. Mirjalili, Fractional-order calculus-based flower pollination algorithm with local search for global optimization and image segmentation, Knowledge-Based Systems, 1975 (2020), 105889. doi: 10.1016/j.knosys.2020.105889.  Google Scholar

[36]

K. Zimmermann, Fuzzy set covering problem, International Journal of General Systems, 20 (1991), 127-131.  doi: 10.1080/03081079108945020.  Google Scholar

show all references

References:
[1]

M. Akram, A. Bashir and H. Garg, Decision-making model under complex picture fuzzy Hamacher aggregation operators, Computational and Applied Mathematics, 39 (2020), Paper No. 226, 38 pp. doi: 10.1007/s40314-020-01251-2.  Google Scholar

[2]

M. Akram, G. Muhammad and T. Allahviranloo, Bipolar fuzzy linear system of equations,, Computational and Applied Mathematics, 38 (2019a), Paper No. 69, 29 pp. doi: 10.1007/s40314-019-0814-8.  Google Scholar

[3]

M. AkramD. Saleem and T. Allahviranloo, Linear system of equations in m-polar fuzzy environment, Journal of Intelligent & Fuzzy Systems, 37 (2019), 8251-8266.  doi: 10.3233/JIFS-190744.  Google Scholar

[4]

M. Arana-Jimz, Nondominated solutions in a fully fuzzy linear programming problem, Mathematical Methods in the Applied Sciences, 41 (2018), 7421-7430.  doi: 10.1002/mma.4882.  Google Scholar

[5]

E. Cakita and W. Karwowskib, A fuzzy overlay model for mapping adverse event risk in an active war theatre, Journal of Experimental & Theoretical Artificial Intelligence, 30 (2018), 691-701.  doi: 10.1080/0952813X.2018.1467494.  Google Scholar

[6]

A. Charnes and W. W. Cooper, Programming with Linear Fractional Functionals, Naval Research Logistics Quarterly, 9 (1962), 181-186.  doi: 10.1002/nav.3800090303.  Google Scholar

[7]

T. P. Dao and S. C. Huang, Design and multi-objective optimization for a broad self-amplified 2-DOF monolithic mechanism, Sadhana, 42 (2017), 1527-1542.  doi: 10.1007/s12046-017-0714-9.  Google Scholar

[8]

W. A. De OliveiraM. A. Rojas-MedarA. Beato-Moreno and M. B. Hernez-Jimz, Necessary and sufficient conditions for achieving global optimal solutions in multiobjective quadratic fractional optimization problems, Journal of Global Optimization, 74 (2019), 233-253.  doi: 10.1007/s10898-019-00766-1.  Google Scholar

[9]

J. Frenk and S. Schaible, Fractional Programming, Handbook of Generalized Convexity and Generalized Monotonicity, In: N. Hadjisavvas, S. Komlosi, S. Schaible, editors, Nonconvex Optimization and its Applications, , Springer-Verlag, Berlin, 2005. Google Scholar

[10]

H. Garg, Exponential operational laws and new aggregation operators for intuitionistic multiplicative set in multiple-attribute group decision making process, Information Sciences, 538 (2020), 245-272.  doi: 10.1016/j.ins.2020.05.095.  Google Scholar

[11]

H. Garg, Linguistic interval-valued Pythagorean fuzzy sets and their application to multiple attribute group decision-making process, Cognitive Computation, 12 (2020), 1313-1337.  doi: 10.1007/s12559-020-09750-4.  Google Scholar

[12]

H. Garg, Neutrality operations-based Pythagorean fuzzy aggregation operators and its applications to multiple attribute group decision-making process, Journal of Ambient Intelligence and Humanized Computing, 11 (2020), 3021-3041.  doi: 10.1007/s12652-019-01448-2.  Google Scholar

[13]

P. Gupta and M. K. Mehlawat, A new possibilistic programming approach for solving fuzzy multiobjective assignment problem, IEEE Transactions on Fuzzy Systems, 22 (2014), 16-34.  doi: 10.1109/TFUZZ.2013.2245134.  Google Scholar

[14]

R. Gupta and R. R. Saxena, Fuzzy linear fractional set covering problem with imprecise costs, Rairo Operations Research, 48 (2014), 415-427.  doi: 10.1051/ro/2014015.  Google Scholar

[15]

J. Li and R. S. K. Kwan, A meta-heuristic with orthogonal experiment for the set covering problem, Journal of Mathematical Modelling and Algorithms, 3 (2004), 263-283.  doi: 10.1023/B:JMMA.0000038619.69509.bf.  Google Scholar

[16]

A. MahmoodiradT. Allahviranloo and S. Niroomand, A new effective solution method for fully intuitionistic fuzzy transportation problem, Soft Computing, 23 (2019), 4521-4530.  doi: 10.1007/s00500-018-3115-z.  Google Scholar

[17]

A. Mahmoodirad and S. Niroomand, Uncertain location-allocation decisions for a bi-objective two-stage supply chain network design problem with environmental impacts, Expert Systems, 37 (2020), e12558. doi: 10.1111/exsy.12558.  Google Scholar

[18]

A. MahmoodiradS. NiroomandN. Mirzaei and A. Shoja, Fuzzy fractional minimal cost flow problem, International Journal of Fuzzy Systems, 20 (2018), 174-186.  doi: 10.1007/s40815-017-0293-2.  Google Scholar

[19]

A. MahmoodiradS. Niroomand and M. Shafiee, A closed loop supply chain network design problem with multi-mode demand satisfaction in fuzzy environment, Journal of Intelligent & Fuzzy Systems, 39 (2020), 503-524.  doi: 10.3233/JIFS-191528.  Google Scholar

[20]

M. Moula and A. Mekhilef, Quadratic optimization over a discrete pareto set of a multi-objective linear fractional program, Optimization, 2020. doi: 10.1080/02331934.2020.1730834.  Google Scholar

[21]

S. NiroomandA. BazyarM. Alborzi and A. Mahmoodirad, A hybrid approach for multi-criteria emergency center location problem considering existing emergency centers with interval type data: A case study, Journal of Ambient Intelligence and Humanized Computing, 9 (2018), 1999-2008.   Google Scholar

[22]

S. Niroomand, H. Garg and A. Mahmoodirad, An intuitionistic fuzzy two stage supply chain network design problem with multi-mode demand and multi-mode transportation, ISA Transactions, 2020. doi: 10.1016/j.isatra.2020.07.033.  Google Scholar

[23]

S. NiroomandA. Hadi-VenchehN. Mirzaei and S. Molla-Alizadeh-Zavardehi, Hybrid greedy algorithms for fuzzy tardiness/earliness minimisation in a special single machine scheduling problem: case study and generalisation, International Journal of Computer Integrated Manufacturing, 29 (2016), 870-888.   Google Scholar

[24]

S. Niroomand, A. Mahmoodirad and S. Mosallaeipour, A hybrid solution approach for fuzzy multiobjective dual supplier and material selection problem of carton box production systems, Expert Systems, 36 (2019), e12341. Google Scholar

[25]

D. RaniT. R. Gulati and H. Garg, Multi-objective non - linear programming problem in intuitionistic fuzzy environment: Optimistic and pessimistic view point, Expert Systems with Applications, 64 (2016), 228-238.  doi: 10.1016/j.eswa.2016.07.034.  Google Scholar

[26]

R. Sahraeian and M. S. Kazemi, A fuzzy set covering-clustering algorithm for facility location problem, IEEE International Conference on Industrial Engineering Management, (2011), 1098–1102. Google Scholar

[27]

M. SaneiA. Mahmoodirad and S. Niroomand, Two-stage supply chain network design problem with interval data, International Journal of e-Navigation and Maritime Economy, 5 (2016), 74-84.  doi: 10.1016/j.enavi.2016.12.006.  Google Scholar

[28]

R. R. Saxena and S. R. Arora, A linearization technique for solving the quadratic set covering problem, Optimization, 39 (1997), 35-42.  doi: 10.1080/02331939708844269.  Google Scholar

[29]

R. R. Saxena and R. Gupta, Enumeration technique for solving linear fractional fuzzy set covering problem, International Journal of Pure and Applied Mathematics, 84 (2013), 477-496.  doi: 10.12732/ijpam.v84i5.3.  Google Scholar

[30]

S. Schaible and J. Shi, Fractional programming: The sum-of-ratios case, Optimization Methods and Software, 18 (2003), 219-229.  doi: 10.1080/1055678031000105242.  Google Scholar

[31]

S. Schaible, A note on the sum of a linear and linear-fractional function, Naval Research Logistics Quarterly, 24 (1977), 691-693.   Google Scholar

[32]

H. Shavandi and H. Mahlooji, Fuzzy hierarchical queueing models for the location set covering problem in congested systems, Scientia Iranica, 15 (2008), 378-388.   Google Scholar

[33]

R. H. WaliaU. MishraH. Garg and H. P. Umap, A nonlinear programming approach to solve the stochastic multi-objective inventory model using the uncertain information, Arabian Journal for Science and Engineering, 45 (2020), 6963-6973.   Google Scholar

[34]

Z. Yang, H. Garg, J. Li, G. Srivastava and Z. Cao, Investigation of multiple heterogeneous relationships using a Q-order neighbor pair fuzzy multi-criteria decision algorithm, Neural Computing and Applications, (2020). doi: 10.1007/s00521-020-05003-5.  Google Scholar

[35]

D. Yousri M. Abd Elaziz S. Mirjalili, Fractional-order calculus-based flower pollination algorithm with local search for global optimization and image segmentation, Knowledge-Based Systems, 1975 (2020), 105889. doi: 10.1016/j.knosys.2020.105889.  Google Scholar

[36]

K. Zimmermann, Fuzzy set covering problem, International Journal of General Systems, 20 (1991), 127-131.  doi: 10.1080/03081079108945020.  Google Scholar

Figure 1.  The fuzzy objective function obtained by the proposed approach and the approach of Gupta and Saxena [14] for Example 1
Figure 2.  The fuzzy objective function obtained by the proposed approach and the approach of Gupta and Saxena [14] for Example 2
Table 1.  The goals obtained for Example 1 from Step 3 of the proposed approach
Objective
$ X_1 $ $ X_2 $ $ X_3 $ function value
Model (30) $ 1 $ $ 1 $ $ 0 $ $ Z^{1*}=0.622 $
Model (31) $ 1 $ $ 1 $ $ 0 $ $ Z^{2*}=0.966 $
Model (32) $ 1 $ $ 1 $ $ 0 $ $ Z^{3*}=1.034 $
Model (33) $ 1 $ $ 1 $ $ 0 $ $ Z^{4*}=2.875 $
Objective
$ X_1 $ $ X_2 $ $ X_3 $ function value
Model (30) $ 1 $ $ 1 $ $ 0 $ $ Z^{1*}=0.622 $
Model (31) $ 1 $ $ 1 $ $ 0 $ $ Z^{2*}=0.966 $
Model (32) $ 1 $ $ 1 $ $ 0 $ $ Z^{3*}=1.034 $
Model (33) $ 1 $ $ 1 $ $ 0 $ $ Z^{4*}=2.875 $
[1]

Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021037

[2]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[3]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[4]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

[5]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[6]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[7]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[8]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[9]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[10]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[11]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[12]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[13]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[14]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[15]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[16]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[17]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[18]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[19]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[20]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (55)
  • HTML views (98)
  • Cited by (1)

Other articles
by authors

[Back to Top]