-
Previous Article
A stochastic model and social optimization of a blockchain system based on a general limited batch service queue
- JIMO Home
- This Issue
-
Next Article
On limiting characteristics for a non-stationary two-processor heterogeneous system with catastrophes, server failures and repairs
The skewness for uncertain random variable and application to portfolio selection problem
1. | School of Applied Mathematics, Nanjing University of Finance and Economics, Nanjing 210023, China |
2. | School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China |
Uncertainty and randomness are two basic types of indeterminacy, where uncertain variable is used to represent quantities with human uncertainty and random variable is applied for modeling quantities with objective randomness. In many real systems, uncertainty and randomness often exist simultaneously. Then uncertain random variable and chance measure can be used to handle such cases. We know that the skewness is a measure of distributional asymmetry. However, the concept of skewness for uncertain random variable has not been clearly defined. In this paper, we first propose a concept of skewness for uncertain random variable and then present a formula for calculating the skewness via chance distribution. Applying the presented formula, the skewnesses of three special uncertain random variables are derived. Finally, a portfolio selection problem is carried out for showing the efficiency and applicability of skewness and presented formula.
References:
[1] |
H. Ahmadzade, Y. Sheng and F. Hassantabar Darzi,
Some results of moments of uncertain random variables, Iran. J. Fuzzy Syst., 14 (2017), 1-21.
|
[2] |
R. Bhattacharyya, A. Chatterjee and S. Kar, Mean-variance-skewness portfolio selection model in general uncertain environment, Indian J. Ind. Appl. Math., 3 (2012), 45-61. Google Scholar |
[3] |
W. Briec, K. Kerstens and I. Van de Woestyne,
Portfolio selection with skewness: A comparison of methods and a generalized one fund result, Eur. J. Oper. Res., 230 (2013), 412-421.
doi: 10.1016/j.ejor.2013.04.021. |
[4] |
A. Chatterjee, R. Bhattacharyya, S. Mukherjee and S. Kar,
Optimization of mean-semivariance-skewness portfolio selection model in fuzzy random environment, ICOMOS 2010, American Institute of Physics conference proceedings, 1298 (2010), 516-521.
doi: 10.1063/1.3516359. |
[5] |
W. Chen, Y. Wang, P. Gupta and M. K. Mehlawat,
A novel hybrid heuristic algorithm for a new uncertain mean-variance-skewness portfolio selection model with real constraints, Appl. Intell., 48 (2018), 2996-3018.
doi: 10.1007/s10489-017-1124-8. |
[6] |
Y. Chen and Y. Zhu,
Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems, J. Ind. Manag. Optim., 14 (2018), 913-930.
doi: 10.3934/jimo.2017082. |
[7] |
A. Fernandez-Perez, B. Frijns, A. M. Fuertes and J. Miffre, The skewness of commodity futures returns, J. Bank. Financ., 86 (2018), 143-158. Google Scholar |
[8] |
R. Gao and D. A. Ralescu,
Elliptic entropy of uncertain set and its applications, Int. J. Intell. Syst., 33 (2018), 836-857.
doi: 10.1002/int.21970. |
[9] |
X. Huang and H. Ying, Risk index based models for portfolio adjusting problem with returns subject to experts' evaluations, Econ. Model., 30 (2013), 61-66. Google Scholar |
[10] |
R. G. Ibbotson,
Price performance of common stock new issues, J. Financ. Econ., 2 (1975), 235-272.
doi: 10.1016/0304-405X(75)90015-X. |
[11] |
A. Kolmogorov, Grundbegriffe Der Wahrscheinlichkeitsrechnung, Julius Springer, Berlin, 1933. |
[12] |
H. Kwakernaak,
Fuzzy random variables-Ⅰ: Definitions and theorems, Inform. Sciences, 15 (1978), 1-29.
doi: 10.1016/0020-0255(78)90019-1. |
[13] |
H. Kwakernaak,
Fuzzy random variables-Ⅱ: Algorithms and examples for the discrete case, Inform. Sciences, 17 (1979), 253-278.
doi: 10.1016/0020-0255(79)90020-3. |
[14] |
D. Kahneman and A. Tversky,
Prospect theory: An analysis of decision under risk, Econometrica, 47 (1979), 263-292.
doi: 10.2307/1914185. |
[15] |
X. Li, Z. Qin and K. Kar, Mean-variance-skewness model for portfolio selection with fuzzy returns, Eur. J. Oper. Res., 202 (2010), 239-247. Google Scholar |
[16] |
B. Liu, Uncertainty Theory, Second ed., Springer-Verlag, Berlin, 2007. |
[17] |
B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer-Verlag, Berlin, 2004.
doi: 10.1007/978-3-540-39987-2. |
[18] |
B. Li, Y. Sun, G. Aw and K. L. Teo,
Uncertain portfolio optimization problem under a minimax risk measure, Appl. Math. Model., 76 (2019), 274-281.
doi: 10.1016/j.apm.2019.06.019. |
[19] |
Y. Liu,
Uncertain random variables: A mixture of uncertainty and randomness, Soft Comput., 17 (2013), 625-634.
doi: 10.1007/s00500-012-0935-0. |
[20] |
B. Liu, Some research problems in uncertainty theory, J. Uncertain Syst., 3 (2009), 3-10. Google Scholar |
[21] |
Y. Liu,
Uncertain random programming with applications, Fuzzy Optim. Decis. Ma., 12 (2013), 153-169.
doi: 10.1007/s10700-012-9149-2. |
[22] |
H. M. Markowitz,
Portfolio selection, J. Financ., 7 (1952), 77-91.
|
[23] |
A. J. Prakash, C. H. Chang and T. E. Pactwa, Selecting a portfolio with skewness: Recent evidence from US, European and Latin American equity markets, J. Bank. Financ., 27 (2003), 1375-1390. Google Scholar |
[24] |
Z. Qin,
Mean-variance model for portfolio optimization problem in the simultaneous presence of random and uncertain returns, Eur. J. Oper. Res., 245 (2015), 480-488.
doi: 10.1016/j.ejor.2015.03.017. |
[25] |
W. Xu, G. Liu, H. Li and W. Luo,
A study on project portfolio models with skewness risk and staffing, Int. J. Fuzzy Syst., 19 (2017), 2033-2047.
doi: 10.1007/s40815-017-0295-0. |
[26] |
H. Yan, Y. Sun and Y. Zhu,
A linear-quadratic control problem of uncertain discrete-time switched systems, J. Ind. Manag. Optim., 13 (2017), 267-282.
doi: 10.3934/jimo.2016016. |
[27] |
X. Yang and J. Gao,
Linear-quadratic uncertain differential games with application to resource extraction problem, IEEE Trans. Fuzzy Syst., 24 (2016), 819-826.
doi: 10.1109/TFUZZ.2015.2486809. |
[28] |
T. Ye and Y. Zhu,
A metric on uncertain variables, Int. J. Uncertain. Quan., 8 (2018), 251-266.
doi: 10.1615/Int.J.UncertaintyQuantification.2018020455. |
[29] |
J. Zhai, M. Bai and H. Wu,
Mean-risk-skewness models for portfolio optimization based on uncertain measure, Optimization, 67 (2018), 701-714.
doi: 10.1080/02331934.2018.1426577. |
[30] |
L. A. Zadeh,
Fuzzy sets, Inform. Control, 8 (1965), 338-353.
doi: 10.1016/S0019-9958(65)90241-X. |
show all references
References:
[1] |
H. Ahmadzade, Y. Sheng and F. Hassantabar Darzi,
Some results of moments of uncertain random variables, Iran. J. Fuzzy Syst., 14 (2017), 1-21.
|
[2] |
R. Bhattacharyya, A. Chatterjee and S. Kar, Mean-variance-skewness portfolio selection model in general uncertain environment, Indian J. Ind. Appl. Math., 3 (2012), 45-61. Google Scholar |
[3] |
W. Briec, K. Kerstens and I. Van de Woestyne,
Portfolio selection with skewness: A comparison of methods and a generalized one fund result, Eur. J. Oper. Res., 230 (2013), 412-421.
doi: 10.1016/j.ejor.2013.04.021. |
[4] |
A. Chatterjee, R. Bhattacharyya, S. Mukherjee and S. Kar,
Optimization of mean-semivariance-skewness portfolio selection model in fuzzy random environment, ICOMOS 2010, American Institute of Physics conference proceedings, 1298 (2010), 516-521.
doi: 10.1063/1.3516359. |
[5] |
W. Chen, Y. Wang, P. Gupta and M. K. Mehlawat,
A novel hybrid heuristic algorithm for a new uncertain mean-variance-skewness portfolio selection model with real constraints, Appl. Intell., 48 (2018), 2996-3018.
doi: 10.1007/s10489-017-1124-8. |
[6] |
Y. Chen and Y. Zhu,
Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems, J. Ind. Manag. Optim., 14 (2018), 913-930.
doi: 10.3934/jimo.2017082. |
[7] |
A. Fernandez-Perez, B. Frijns, A. M. Fuertes and J. Miffre, The skewness of commodity futures returns, J. Bank. Financ., 86 (2018), 143-158. Google Scholar |
[8] |
R. Gao and D. A. Ralescu,
Elliptic entropy of uncertain set and its applications, Int. J. Intell. Syst., 33 (2018), 836-857.
doi: 10.1002/int.21970. |
[9] |
X. Huang and H. Ying, Risk index based models for portfolio adjusting problem with returns subject to experts' evaluations, Econ. Model., 30 (2013), 61-66. Google Scholar |
[10] |
R. G. Ibbotson,
Price performance of common stock new issues, J. Financ. Econ., 2 (1975), 235-272.
doi: 10.1016/0304-405X(75)90015-X. |
[11] |
A. Kolmogorov, Grundbegriffe Der Wahrscheinlichkeitsrechnung, Julius Springer, Berlin, 1933. |
[12] |
H. Kwakernaak,
Fuzzy random variables-Ⅰ: Definitions and theorems, Inform. Sciences, 15 (1978), 1-29.
doi: 10.1016/0020-0255(78)90019-1. |
[13] |
H. Kwakernaak,
Fuzzy random variables-Ⅱ: Algorithms and examples for the discrete case, Inform. Sciences, 17 (1979), 253-278.
doi: 10.1016/0020-0255(79)90020-3. |
[14] |
D. Kahneman and A. Tversky,
Prospect theory: An analysis of decision under risk, Econometrica, 47 (1979), 263-292.
doi: 10.2307/1914185. |
[15] |
X. Li, Z. Qin and K. Kar, Mean-variance-skewness model for portfolio selection with fuzzy returns, Eur. J. Oper. Res., 202 (2010), 239-247. Google Scholar |
[16] |
B. Liu, Uncertainty Theory, Second ed., Springer-Verlag, Berlin, 2007. |
[17] |
B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer-Verlag, Berlin, 2004.
doi: 10.1007/978-3-540-39987-2. |
[18] |
B. Li, Y. Sun, G. Aw and K. L. Teo,
Uncertain portfolio optimization problem under a minimax risk measure, Appl. Math. Model., 76 (2019), 274-281.
doi: 10.1016/j.apm.2019.06.019. |
[19] |
Y. Liu,
Uncertain random variables: A mixture of uncertainty and randomness, Soft Comput., 17 (2013), 625-634.
doi: 10.1007/s00500-012-0935-0. |
[20] |
B. Liu, Some research problems in uncertainty theory, J. Uncertain Syst., 3 (2009), 3-10. Google Scholar |
[21] |
Y. Liu,
Uncertain random programming with applications, Fuzzy Optim. Decis. Ma., 12 (2013), 153-169.
doi: 10.1007/s10700-012-9149-2. |
[22] |
H. M. Markowitz,
Portfolio selection, J. Financ., 7 (1952), 77-91.
|
[23] |
A. J. Prakash, C. H. Chang and T. E. Pactwa, Selecting a portfolio with skewness: Recent evidence from US, European and Latin American equity markets, J. Bank. Financ., 27 (2003), 1375-1390. Google Scholar |
[24] |
Z. Qin,
Mean-variance model for portfolio optimization problem in the simultaneous presence of random and uncertain returns, Eur. J. Oper. Res., 245 (2015), 480-488.
doi: 10.1016/j.ejor.2015.03.017. |
[25] |
W. Xu, G. Liu, H. Li and W. Luo,
A study on project portfolio models with skewness risk and staffing, Int. J. Fuzzy Syst., 19 (2017), 2033-2047.
doi: 10.1007/s40815-017-0295-0. |
[26] |
H. Yan, Y. Sun and Y. Zhu,
A linear-quadratic control problem of uncertain discrete-time switched systems, J. Ind. Manag. Optim., 13 (2017), 267-282.
doi: 10.3934/jimo.2016016. |
[27] |
X. Yang and J. Gao,
Linear-quadratic uncertain differential games with application to resource extraction problem, IEEE Trans. Fuzzy Syst., 24 (2016), 819-826.
doi: 10.1109/TFUZZ.2015.2486809. |
[28] |
T. Ye and Y. Zhu,
A metric on uncertain variables, Int. J. Uncertain. Quan., 8 (2018), 251-266.
doi: 10.1615/Int.J.UncertaintyQuantification.2018020455. |
[29] |
J. Zhai, M. Bai and H. Wu,
Mean-risk-skewness models for portfolio optimization based on uncertain measure, Optimization, 67 (2018), 701-714.
doi: 10.1080/02331934.2018.1426577. |
[30] |
L. A. Zadeh,
Fuzzy sets, Inform. Control, 8 (1965), 338-353.
doi: 10.1016/S0019-9958(65)90241-X. |
Expected value | Variance | Skewness | ||
0.0075 | ||||
0.0075 | ||||
0.0075 | ||||
0.0075 | ||||
0.0075 | ||||
0.0075 | ||||
0.0075 | ||||
0.0075 | ||||
0.0075 |
Expected value | Variance | Skewness | ||
0.0075 | ||||
0.0075 | ||||
0.0075 | ||||
0.0075 | ||||
0.0075 | ||||
0.0075 | ||||
0.0075 | ||||
0.0075 | ||||
0.0075 |
[1] |
Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020104 |
[2] |
Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099 |
[3] |
Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020125 |
[4] |
Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319 |
[5] |
Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055 |
[6] |
Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020 |
[7] |
Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011 |
[8] |
Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020164 |
[9] |
Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1079-1092. doi: 10.3934/dcdss.2020352 |
[10] |
Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329 |
[11] |
Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121 |
[12] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020390 |
[13] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[14] |
Josselin Garnier, Knut Sølna. Enhanced Backscattering of a partially coherent field from an anisotropic random lossy medium. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1171-1195. doi: 10.3934/dcdsb.2020158 |
[15] |
Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080 |
[16] |
Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020168 |
[17] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[18] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
[19] |
Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189 |
[20] |
Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]