• Previous Article
    Second-Order characterizations for set-valued equilibrium problems with variable ordering structures
  • JIMO Home
  • This Issue
  • Next Article
    Solving fuzzy linear fractional set covering problem by a goal programming based solution approach
January  2022, 18(1): 457-467. doi: 10.3934/jimo.2020163

The skewness for uncertain random variable and application to portfolio selection problem

1. 

School of Applied Mathematics, Nanjing University of Finance and Economics, Nanjing 210023, China

2. 

School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China

* Corresponding author: Bo Li

Received  June 2020 Revised  August 2020 Published  January 2022 Early access  November 2020

Uncertainty and randomness are two basic types of indeterminacy, where uncertain variable is used to represent quantities with human uncertainty and random variable is applied for modeling quantities with objective randomness. In many real systems, uncertainty and randomness often exist simultaneously. Then uncertain random variable and chance measure can be used to handle such cases. We know that the skewness is a measure of distributional asymmetry. However, the concept of skewness for uncertain random variable has not been clearly defined. In this paper, we first propose a concept of skewness for uncertain random variable and then present a formula for calculating the skewness via chance distribution. Applying the presented formula, the skewnesses of three special uncertain random variables are derived. Finally, a portfolio selection problem is carried out for showing the efficiency and applicability of skewness and presented formula.

Citation: Bo Li, Yadong Shu. The skewness for uncertain random variable and application to portfolio selection problem. Journal of Industrial and Management Optimization, 2022, 18 (1) : 457-467. doi: 10.3934/jimo.2020163
References:
[1]

H. AhmadzadeY. Sheng and F. Hassantabar Darzi, Some results of moments of uncertain random variables, Iran. J. Fuzzy Syst., 14 (2017), 1-21. 

[2]

R. BhattacharyyaA. Chatterjee and S. Kar, Mean-variance-skewness portfolio selection model in general uncertain environment, Indian J. Ind. Appl. Math., 3 (2012), 45-61. 

[3]

W. BriecK. Kerstens and I. Van de Woestyne, Portfolio selection with skewness: A comparison of methods and a generalized one fund result, Eur. J. Oper. Res., 230 (2013), 412-421.  doi: 10.1016/j.ejor.2013.04.021.

[4]

A. ChatterjeeR. BhattacharyyaS. Mukherjee and S. Kar, Optimization of mean-semivariance-skewness portfolio selection model in fuzzy random environment, ICOMOS 2010, American Institute of Physics conference proceedings, 1298 (2010), 516-521.  doi: 10.1063/1.3516359.

[5]

W. ChenY. WangP. Gupta and M. K. Mehlawat, A novel hybrid heuristic algorithm for a new uncertain mean-variance-skewness portfolio selection model with real constraints, Appl. Intell., 48 (2018), 2996-3018.  doi: 10.1007/s10489-017-1124-8.

[6]

Y. Chen and Y. Zhu, Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems, J. Ind. Manag. Optim., 14 (2018), 913-930.  doi: 10.3934/jimo.2017082.

[7]

A. Fernandez-PerezB. FrijnsA. M. Fuertes and J. Miffre, The skewness of commodity futures returns, J. Bank. Financ., 86 (2018), 143-158. 

[8]

R. Gao and D. A. Ralescu, Elliptic entropy of uncertain set and its applications, Int. J. Intell. Syst., 33 (2018), 836-857.  doi: 10.1002/int.21970.

[9]

X. Huang and H. Ying, Risk index based models for portfolio adjusting problem with returns subject to experts' evaluations, Econ. Model., 30 (2013), 61-66. 

[10]

R. G. Ibbotson, Price performance of common stock new issues, J. Financ. Econ., 2 (1975), 235-272.  doi: 10.1016/0304-405X(75)90015-X.

[11]

A. Kolmogorov, Grundbegriffe Der Wahrscheinlichkeitsrechnung, Julius Springer, Berlin, 1933.

[12]

H. Kwakernaak, Fuzzy random variables-Ⅰ: Definitions and theorems, Inform. Sciences, 15 (1978), 1-29.  doi: 10.1016/0020-0255(78)90019-1.

[13]

H. Kwakernaak, Fuzzy random variables-Ⅱ: Algorithms and examples for the discrete case, Inform. Sciences, 17 (1979), 253-278.  doi: 10.1016/0020-0255(79)90020-3.

[14]

D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica, 47 (1979), 263-292.  doi: 10.2307/1914185.

[15]

X. LiZ. Qin and K. Kar, Mean-variance-skewness model for portfolio selection with fuzzy returns, Eur. J. Oper. Res., 202 (2010), 239-247. 

[16]

B. Liu, Uncertainty Theory, Second ed., Springer-Verlag, Berlin, 2007.

[17]

B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-540-39987-2.

[18]

B. LiY. SunG. Aw and K. L. Teo, Uncertain portfolio optimization problem under a minimax risk measure, Appl. Math. Model., 76 (2019), 274-281.  doi: 10.1016/j.apm.2019.06.019.

[19]

Y. Liu, Uncertain random variables: A mixture of uncertainty and randomness, Soft Comput., 17 (2013), 625-634.  doi: 10.1007/s00500-012-0935-0.

[20]

B. Liu, Some research problems in uncertainty theory, J. Uncertain Syst., 3 (2009), 3-10. 

[21]

Y. Liu, Uncertain random programming with applications, Fuzzy Optim. Decis. Ma., 12 (2013), 153-169.  doi: 10.1007/s10700-012-9149-2.

[22]

H. M. Markowitz, Portfolio selection, J. Financ., 7 (1952), 77-91. 

[23]

A. J. PrakashC. H. Chang and T. E. Pactwa, Selecting a portfolio with skewness: Recent evidence from US, European and Latin American equity markets, J. Bank. Financ., 27 (2003), 1375-1390. 

[24]

Z. Qin, Mean-variance model for portfolio optimization problem in the simultaneous presence of random and uncertain returns, Eur. J. Oper. Res., 245 (2015), 480-488.  doi: 10.1016/j.ejor.2015.03.017.

[25]

W. XuG. LiuH. Li and W. Luo, A study on project portfolio models with skewness risk and staffing, Int. J. Fuzzy Syst., 19 (2017), 2033-2047.  doi: 10.1007/s40815-017-0295-0.

[26]

H. YanY. Sun and Y. Zhu, A linear-quadratic control problem of uncertain discrete-time switched systems, J. Ind. Manag. Optim., 13 (2017), 267-282.  doi: 10.3934/jimo.2016016.

[27]

X. Yang and J. Gao, Linear-quadratic uncertain differential games with application to resource extraction problem, IEEE Trans. Fuzzy Syst., 24 (2016), 819-826.  doi: 10.1109/TFUZZ.2015.2486809.

[28]

T. Ye and Y. Zhu, A metric on uncertain variables, Int. J. Uncertain. Quan., 8 (2018), 251-266.  doi: 10.1615/Int.J.UncertaintyQuantification.2018020455.

[29]

J. ZhaiM. Bai and H. Wu, Mean-risk-skewness models for portfolio optimization based on uncertain measure, Optimization, 67 (2018), 701-714.  doi: 10.1080/02331934.2018.1426577.

[30]

L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338-353.  doi: 10.1016/S0019-9958(65)90241-X.

show all references

References:
[1]

H. AhmadzadeY. Sheng and F. Hassantabar Darzi, Some results of moments of uncertain random variables, Iran. J. Fuzzy Syst., 14 (2017), 1-21. 

[2]

R. BhattacharyyaA. Chatterjee and S. Kar, Mean-variance-skewness portfolio selection model in general uncertain environment, Indian J. Ind. Appl. Math., 3 (2012), 45-61. 

[3]

W. BriecK. Kerstens and I. Van de Woestyne, Portfolio selection with skewness: A comparison of methods and a generalized one fund result, Eur. J. Oper. Res., 230 (2013), 412-421.  doi: 10.1016/j.ejor.2013.04.021.

[4]

A. ChatterjeeR. BhattacharyyaS. Mukherjee and S. Kar, Optimization of mean-semivariance-skewness portfolio selection model in fuzzy random environment, ICOMOS 2010, American Institute of Physics conference proceedings, 1298 (2010), 516-521.  doi: 10.1063/1.3516359.

[5]

W. ChenY. WangP. Gupta and M. K. Mehlawat, A novel hybrid heuristic algorithm for a new uncertain mean-variance-skewness portfolio selection model with real constraints, Appl. Intell., 48 (2018), 2996-3018.  doi: 10.1007/s10489-017-1124-8.

[6]

Y. Chen and Y. Zhu, Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems, J. Ind. Manag. Optim., 14 (2018), 913-930.  doi: 10.3934/jimo.2017082.

[7]

A. Fernandez-PerezB. FrijnsA. M. Fuertes and J. Miffre, The skewness of commodity futures returns, J. Bank. Financ., 86 (2018), 143-158. 

[8]

R. Gao and D. A. Ralescu, Elliptic entropy of uncertain set and its applications, Int. J. Intell. Syst., 33 (2018), 836-857.  doi: 10.1002/int.21970.

[9]

X. Huang and H. Ying, Risk index based models for portfolio adjusting problem with returns subject to experts' evaluations, Econ. Model., 30 (2013), 61-66. 

[10]

R. G. Ibbotson, Price performance of common stock new issues, J. Financ. Econ., 2 (1975), 235-272.  doi: 10.1016/0304-405X(75)90015-X.

[11]

A. Kolmogorov, Grundbegriffe Der Wahrscheinlichkeitsrechnung, Julius Springer, Berlin, 1933.

[12]

H. Kwakernaak, Fuzzy random variables-Ⅰ: Definitions and theorems, Inform. Sciences, 15 (1978), 1-29.  doi: 10.1016/0020-0255(78)90019-1.

[13]

H. Kwakernaak, Fuzzy random variables-Ⅱ: Algorithms and examples for the discrete case, Inform. Sciences, 17 (1979), 253-278.  doi: 10.1016/0020-0255(79)90020-3.

[14]

D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica, 47 (1979), 263-292.  doi: 10.2307/1914185.

[15]

X. LiZ. Qin and K. Kar, Mean-variance-skewness model for portfolio selection with fuzzy returns, Eur. J. Oper. Res., 202 (2010), 239-247. 

[16]

B. Liu, Uncertainty Theory, Second ed., Springer-Verlag, Berlin, 2007.

[17]

B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-540-39987-2.

[18]

B. LiY. SunG. Aw and K. L. Teo, Uncertain portfolio optimization problem under a minimax risk measure, Appl. Math. Model., 76 (2019), 274-281.  doi: 10.1016/j.apm.2019.06.019.

[19]

Y. Liu, Uncertain random variables: A mixture of uncertainty and randomness, Soft Comput., 17 (2013), 625-634.  doi: 10.1007/s00500-012-0935-0.

[20]

B. Liu, Some research problems in uncertainty theory, J. Uncertain Syst., 3 (2009), 3-10. 

[21]

Y. Liu, Uncertain random programming with applications, Fuzzy Optim. Decis. Ma., 12 (2013), 153-169.  doi: 10.1007/s10700-012-9149-2.

[22]

H. M. Markowitz, Portfolio selection, J. Financ., 7 (1952), 77-91. 

[23]

A. J. PrakashC. H. Chang and T. E. Pactwa, Selecting a portfolio with skewness: Recent evidence from US, European and Latin American equity markets, J. Bank. Financ., 27 (2003), 1375-1390. 

[24]

Z. Qin, Mean-variance model for portfolio optimization problem in the simultaneous presence of random and uncertain returns, Eur. J. Oper. Res., 245 (2015), 480-488.  doi: 10.1016/j.ejor.2015.03.017.

[25]

W. XuG. LiuH. Li and W. Luo, A study on project portfolio models with skewness risk and staffing, Int. J. Fuzzy Syst., 19 (2017), 2033-2047.  doi: 10.1007/s40815-017-0295-0.

[26]

H. YanY. Sun and Y. Zhu, A linear-quadratic control problem of uncertain discrete-time switched systems, J. Ind. Manag. Optim., 13 (2017), 267-282.  doi: 10.3934/jimo.2016016.

[27]

X. Yang and J. Gao, Linear-quadratic uncertain differential games with application to resource extraction problem, IEEE Trans. Fuzzy Syst., 24 (2016), 819-826.  doi: 10.1109/TFUZZ.2015.2486809.

[28]

T. Ye and Y. Zhu, A metric on uncertain variables, Int. J. Uncertain. Quan., 8 (2018), 251-266.  doi: 10.1615/Int.J.UncertaintyQuantification.2018020455.

[29]

J. ZhaiM. Bai and H. Wu, Mean-risk-skewness models for portfolio optimization based on uncertain measure, Optimization, 67 (2018), 701-714.  doi: 10.1080/02331934.2018.1426577.

[30]

L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338-353.  doi: 10.1016/S0019-9958(65)90241-X.

Table 1.  The computational results for different $ p $ and $ q $
$ (p, q) $ $ (x_{1}^{*}, x_{2}^{*}) $ Expected value Variance Skewness
$ (0.04, 0.2) $ $ (0, 1) $ $ 0.04 $ 0.0075 $ 1.125\times10^{-4} $
$ (0.04, 0.5) $ $ (0, 1) $ $ 0.04 $ 0.0075 $ 1.125\times10^{-4} $
$ (0.04, 0.8) $ $ (0, 1) $ $ 0.04 $ 0.0075 $ 1.125\times10^{-4} $
$ (0.02, 0.2) $ $ (0, 1) $ $ 0.04 $ 0.0075 $ 1.125\times10^{-4} $
$ (0.02, 0.5) $ $ (0, 1) $ $ 0.04 $ 0.0075 $ 1.125\times10^{-4} $
$ (0.02, 0.8) $ $ (0, 1) $ $ 0.04 $ 0.0075 $ 1.125\times10^{-4} $
$ (0.01, 0.2) $ $ (0, 1) $ $ 0.04 $ 0.0075 $ 1.125\times10^{-4} $
$ (0.01, 0.5) $ $ (0, 1) $ $ 0.04 $ 0.0075 $ 1.125\times10^{-4} $
$ (0.01, 0.8) $ $ (0, 1) $ $ 0.04 $ 0.0075 $ 1.125\times10^{-4} $
$ (p, q) $ $ (x_{1}^{*}, x_{2}^{*}) $ Expected value Variance Skewness
$ (0.04, 0.2) $ $ (0, 1) $ $ 0.04 $ 0.0075 $ 1.125\times10^{-4} $
$ (0.04, 0.5) $ $ (0, 1) $ $ 0.04 $ 0.0075 $ 1.125\times10^{-4} $
$ (0.04, 0.8) $ $ (0, 1) $ $ 0.04 $ 0.0075 $ 1.125\times10^{-4} $
$ (0.02, 0.2) $ $ (0, 1) $ $ 0.04 $ 0.0075 $ 1.125\times10^{-4} $
$ (0.02, 0.5) $ $ (0, 1) $ $ 0.04 $ 0.0075 $ 1.125\times10^{-4} $
$ (0.02, 0.8) $ $ (0, 1) $ $ 0.04 $ 0.0075 $ 1.125\times10^{-4} $
$ (0.01, 0.2) $ $ (0, 1) $ $ 0.04 $ 0.0075 $ 1.125\times10^{-4} $
$ (0.01, 0.5) $ $ (0, 1) $ $ 0.04 $ 0.0075 $ 1.125\times10^{-4} $
$ (0.01, 0.8) $ $ (0, 1) $ $ 0.04 $ 0.0075 $ 1.125\times10^{-4} $
[1]

Yu Chen, Zixian Cui, Shihan Di, Peibiao Zhao. Capital asset pricing model under distribution uncertainty. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021113

[2]

Editorial Office. RETRACTION: Peng Zhang, Chance-constrained multiperiod mean absolute deviation uncertain portfolio selection. Journal of Industrial and Management Optimization, 2019, 15 (2) : 537-564. doi: 10.3934/jimo.2018056

[3]

Yu Chen, Yonggang Li, Bei Sun, Chunhua Yang, Hongqiu Zhu. Multi-objective chance-constrained blending optimization of zinc smelter under stochastic uncertainty. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021169

[4]

Ying Jiao, Idris Kharroubi. Information uncertainty related to marked random times and optimal investment. Probability, Uncertainty and Quantitative Risk, 2018, 3 (0) : 3-. doi: 10.1186/s41546-018-0029-8

[5]

Yuli Zhang, Lin Han, Xiaotian Zhuang. Distributionally robust front distribution center inventory optimization with uncertain multi-item orders. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1777-1795. doi: 10.3934/dcdss.2022006

[6]

Shihan Di, Dong Ma, Peibiao Zhao. $ \alpha $-robust portfolio optimization problem under the distribution uncertainty. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022054

[7]

Kaveh Keshmiry Zadeh, Fatemeh Harsej, Mahboubeh Sadeghpour, Mohammad Molani Aghdam. Designing a multi-echelon closed-loop supply chain with disruption in the distribution centers under uncertainty. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022057

[8]

Hans Henrik Rugh. On dimensions of conformal repellers. Randomness and parameter dependency. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2553-2564. doi: 10.3934/dcds.2012.32.2553

[9]

Xi Zhu, Meixia Li, Chunfa Li. Consensus in discrete-time multi-agent systems with uncertain topologies and random delays governed by a Markov chain. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4535-4551. doi: 10.3934/dcdsb.2020111

[10]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

[11]

Jiuping Xu, Pei Wei. Production-distribution planning of construction supply chain management under fuzzy random environment for large-scale construction projects. Journal of Industrial and Management Optimization, 2013, 9 (1) : 31-56. doi: 10.3934/jimo.2013.9.31

[12]

Lorenzo Mari, Marino Gatto, Renato Casagrandi. Local resource competition and the skewness of the sex ratio: a demographic model. Mathematical Biosciences & Engineering, 2008, 5 (4) : 813-830. doi: 10.3934/mbe.2008.5.813

[13]

Kevin Ford. The distribution of totients. Electronic Research Announcements, 1998, 4: 27-34.

[14]

Ke-Wei Ding, Nan-Jing Huang, Yi-Bin Xiao. Distributionally robust chance constrained problems under general moments information. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2923-2942. doi: 10.3934/jimo.2019087

[15]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial and Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[16]

Xiantao Xiao, Jian Gu, Liwei Zhang, Shaowu Zhang. A sequential convex program method to DC program with joint chance constraints. Journal of Industrial and Management Optimization, 2012, 8 (3) : 733-747. doi: 10.3934/jimo.2012.8.733

[17]

Yanjun Wang, Shisen Liu. Relaxation schemes for the joint linear chance constraint based on probability inequalities. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021132

[18]

Lifen Jia, Wei Dai. Uncertain spring vibration equation. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021073

[19]

Ioannis D. Baltas, Athanasios N. Yannacopoulos. Uncertainty and inside information. Journal of Dynamics and Games, 2016, 3 (1) : 1-24. doi: 10.3934/jdg.2016001

[20]

Jinqiao Duan, Vincent J. Ervin, Daniel Schertzer. Dispersion in flows with obstacles and uncertainty. Conference Publications, 2001, 2001 (Special) : 131-136. doi: 10.3934/proc.2001.2001.131

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (316)
  • HTML views (553)
  • Cited by (0)

Other articles
by authors

[Back to Top]