• Previous Article
    Generalized Clarke epiderivatives of the extremum multifunction to a multi-objective parametric discrete optimal control problem
  • JIMO Home
  • This Issue
  • Next Article
    Solving a fractional programming problem in a commercial bank
doi: 10.3934/jimo.2020166
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk

1. 

School of Finance, Guangdong University of Foreign Studies, Guangzhou 510006, China

2. 

Actuarial Studies, Department of Economics, University of Melbourne, Australia

3. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China

* Corresponding author: Xun Li

Received  April 2020 Revised  September 2020 Early access November 2020

Fund Project: This research is partially supported by the National Natural Science Foundation of China (Nos. 71871071, 72071051, 71471045), the Innovative Research Group Project of National Natural Science Foundation of China (No. 71721001), the Natural Science Foundation of Guangdong Province of China (Nos. 2018B030311004, 2017A030313399), and Research Grants Council of Hong Kong under grants 15213218 and 15215319

This paper investigates a multi-period asset allocation problem for a defined contribution (DC) pension fund facing stochastic inflation under the Markowitz mean-variance criterion. The stochastic inflation rate is described by a discrete-time version of the Ornstein-Uhlenbeck process. To the best of our knowledge, the literature along the line of dynamic portfolio selection under inflation is dominated by continuous-time models. This paper is the first work to investigate the problem in a discrete-time setting. Using the techniques of state variable transformation, matrix theory, and dynamic programming, we derive the analytical expressions for the efficient investment strategy and the efficient frontier. Moreover, our model's exceptional cases are discussed, indicating that our theoretical results are consistent with the existing literature. Finally, the results established are tested through empirical studies based on Australia's data, where there is a typical DC pension system. The impacts of inflation, investment horizon, estimation error, and superannuation guarantee rate on the efficient frontier are illustrated.

Citation: Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020166
References:
[1]

A. Albert, Conditions for positive and nonnegative definiteness in terms of pseudoinverses, SIAM Journal on Applied Mathematics, 17 (1969), 434–440. doi: 10.1137/0117041.  Google Scholar

[2]

S. Basak and G. Chabakauri, Dynamic mean-variance asset allocation, The Review of Financial Studies, 23 (2010), 2970-3016.   Google Scholar

[3]

D. BlakeD. Wright and Y. Zhang, Target-driven investing: Optimal investment strategies in defined contribution pension plans under loss aversion, Journal of Economic Dynamics and Control, 37 (2013), 195-209.  doi: 10.1016/j.jedc.2012.08.001.  Google Scholar

[4]

D. BlakeD. Wright and Y. M. Zhang, Age-dependent investing: Optimal funding and investment strategies in defined contribution pension plans when members are rational life cycle financial planners, Journal of Economic Dynamics and Control, 38 (2014), 105-124.  doi: 10.1016/j.jedc.2013.11.001.  Google Scholar

[5]

M. J. Brennan and Y. Xia, Dynamic asset allocation under inflation, The Journal of Finance, 57 (2002), 1201-1238.   Google Scholar

[6]

A. Chen and L. Delong, Optimal investment for a defined-contribution pension scheme under a regime switching model, Astin Bulletin, 45 (2015), 397-419.  doi: 10.1017/asb.2014.33.  Google Scholar

[7]

Z. ChenZ. F. LiY. Zeng and J. Y. Sun, Asset allocation under loss aversion and minimum performance constraint in a DC pension plan with inflation risk, Insurance: Mathematics and Economics, 75 (2017), 137-150.  doi: 10.1016/j.insmatheco.2017.05.009.  Google Scholar

[8]

X. Y. CuiJ. J. GaoX. Li and D. Li, Optimal multi-period mean-variance policy under no-shorting constraint, European Journal of Operational Research, 234 (2014), 459-468.  doi: 10.1016/j.ejor.2013.02.040.  Google Scholar

[9]

X. Y. CuiX. Li and D. Li, Mean-variance policy for discrete-time cone constrained markets: The consistency in efficiency and minimum-variance signed supermartingale measure, Mathematical Finance, 27 (2017), 471-504.  doi: 10.1111/mafi.12093.  Google Scholar

[10]

P. DevolderM. Bosch Princep and I. Dominguez Fabian, Stochastic optimal control of annuity contracts, Insurance: Mathematics and Economics, 33 (2003), 227-238.  doi: 10.1016/S0167-6687(03)00136-7.  Google Scholar

[11]

Y. Dong and H. Zheng, Optimal investment of DC pension plan under short-selling constraints and portfolio insurance, Insurance: Mathematics and Economics, 85 (2019), 47-59.  doi: 10.1016/j.insmatheco.2018.12.005.  Google Scholar

[12]

Y. Dong and H. Zheng, Optimal investment with S-shaped utility and trading and Value at Risk constraints: An application to defined contribution pension plan, European Journal of Operational Research, 281 (2020), 341-356.  doi: 10.1016/j.ejor.2019.08.034.  Google Scholar

[13]

P. Emms, Lifetime investment and consumption using a defined-contribution pension scheme, Journal of Economic Dynamics and Control, 36 (2012), 1303-1321.  doi: 10.1016/j.jedc.2012.01.012.  Google Scholar

[14]

R. GerrardB. Hogaard and E. Vigna, Choosing the optimal annuitization time post retirement, Quantitative Finance, 12 (2012), 1143-1159.  doi: 10.1080/14697680903358248.  Google Scholar

[15]

N. W. Han and M. W. Hung, Optimal asset allocation for DC pension plans under inflation, Insurance: Mathematics and Economics, 51 (2012), 172-181.  doi: 10.1016/j.insmatheco.2012.03.003.  Google Scholar

[16]

N.-W. Han and M.-W. Hung, Optimal consumption, portfolio, and life insurance policies under interest rate and in ation risks, Insurance: Mathematics and Economics, 73 (2017), 54-67.  doi: 10.1016/j.insmatheco.2017.01.004.  Google Scholar

[17]

L. He and Z. X. Liang, Optimal assets allocation and benefit outgo policies of DC pension plan with compulsory conversion claims, Insurance: Mathematics and Economics, 61 (2015), 227-234.  doi: 10.1016/j.insmatheco.2015.01.006.  Google Scholar

[18]

A. K. Konicz and J. M. Mulvey, Optimal savings management for individuals with defined contribution pension plans, European Journal of Operational Research, 243 (2015), 233-247.  doi: 10.1016/j.ejor.2014.11.016.  Google Scholar

[19]

M. Kwak and B. H. Lim, Optimal portfolio selection with life insurance under inflation risk, Journal of Banking and Finance, 46 (2014), 59-71.   Google Scholar

[20]

D. Li and W. L. Ng, Optimal dynamic portfolio selection: Multiperiod mean-variance formulation, Mathematical Finance, 10 (2000), 387-406.  doi: 10.1111/1467-9965.00100.  Google Scholar

[21]

D. P. LiX. M. Rong and H. Zhao, Time-consistent reinsurance-investment strategy for a mean-variance insurer under stochastic interest rate model and inflation risk, Insurance: Mathematics and Economics, 64 (2015), 28-44.  doi: 10.1016/j.insmatheco.2015.05.003.  Google Scholar

[22]

X. LiX. Y. Zhou and A. E. B. Lim, Dynamic mean-variance portfolio selection with no-shorting constraints, SIAM Journal on Control and Optimization, 40 (2002), 1540-1555.  doi: 10.1137/S0363012900378504.  Google Scholar

[23]

D. G. Luenberger, Optimization by Vector Space Methods, John Wiley & Sons, Inc., New York-London-Sydney, 1969  Google Scholar

[24]

Q.-P. Ma, On optimal pension management in a stochastic framework with exponential utility, Insurance: Mathematics and Economics, 49 (2011), 61-69.  doi: 10.1016/j.insmatheco.2011.02.003.  Google Scholar

[25]

H. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91.   Google Scholar

[26]

C. MunkC. Sørensen and T. N. Vinther, Dynamic asset allocation under mean-reverting returns, stochastic interest rates, and inflation uncertainty: Are popular recommendations consistent with rational behavior?, International Review of Economics and Finance, 13 (2004), 141-166.   Google Scholar

[27]

M. Simutin, Cash holding and mutual fund performance, Review of Finance, 18 (2014), 1425-1464.  doi: 10.1093/rof/rft035.  Google Scholar

[28]

J. Y. SunZ. F. Li and Y. Zeng, Precommitment and equilibrium investment strategies for defined contribution pension plans under a jump-diffusion model, Insurance: Mathematics and Economics, 67 (2016), 158-172.  doi: 10.1016/j.insmatheco.2016.01.005.  Google Scholar

[29]

M.-L. TangS.-N. ChenG. C. Lai and T. P. Wu, Asset allocation for a DC pension fund under stochastic interest rates and inflation-protected guarantee, Insurance: Mathematics and Economics, 78 (2018), 87-104.  doi: 10.1016/j.insmatheco.2017.11.004.  Google Scholar

[30]

E. Vigna, On efficiency of mean-variance based portfolio selection in defined contribution pension schemes, Quantitative Finance, 14 (2014), 237-258.  doi: 10.1080/14697688.2012.708778.  Google Scholar

[31]

H. X. YaoY. Z. LaiQ. H. Ma and M. J. Jian, Asset allocation for a DC pension fund with stochastic income and mortality risk: A multi-period mean-variance framework, Insurance: Mathematics and Economics, 54 (2014), 84-92.  doi: 10.1016/j.insmatheco.2013.10.016.  Google Scholar

[32]

H. X. YaoZ. F. Li and D. Li, Multi-period mean-variance portfolio selection with stochastic interest rate and uncontrollable liability, European Journal of Operational Research, 252 (2016), 837-851.  doi: 10.1016/j.ejor.2016.01.049.  Google Scholar

[33]

H. X. Yao and Z. Yang adn P. Chen, Markowitz's mean-variance defined contribution pension fund management under inflation: A continuous-time model, Insurance: Mathematics and Economics, 53 (2013), 851-863.  doi: 10.1016/j.insmatheco.2013.10.002.  Google Scholar

[34]

A. Zhang and C.-O. Ewald, Optimal investment for a pension fund under inflation risk, Mathematical Methods of Operations Research, 71 (2010), 353-369.  doi: 10.1007/s00186-009-0294-5.  Google Scholar

[35]

F. Z. Zhang, Matrix Theory: Basic Results and Techniques, Second edition, Universitext. Springer, New York, 2011. doi: 10.1007/978-1-4614-1099-7.  Google Scholar

[36]

L. ZhangH. Zhang and H. X. Yao, Optimal investment management for a defined contribution pension fund under imperfect information, Insurance: Mathematics and Economics, 79 (2018), 210-224.  doi: 10.1016/j.insmatheco.2018.01.007.  Google Scholar

show all references

References:
[1]

A. Albert, Conditions for positive and nonnegative definiteness in terms of pseudoinverses, SIAM Journal on Applied Mathematics, 17 (1969), 434–440. doi: 10.1137/0117041.  Google Scholar

[2]

S. Basak and G. Chabakauri, Dynamic mean-variance asset allocation, The Review of Financial Studies, 23 (2010), 2970-3016.   Google Scholar

[3]

D. BlakeD. Wright and Y. Zhang, Target-driven investing: Optimal investment strategies in defined contribution pension plans under loss aversion, Journal of Economic Dynamics and Control, 37 (2013), 195-209.  doi: 10.1016/j.jedc.2012.08.001.  Google Scholar

[4]

D. BlakeD. Wright and Y. M. Zhang, Age-dependent investing: Optimal funding and investment strategies in defined contribution pension plans when members are rational life cycle financial planners, Journal of Economic Dynamics and Control, 38 (2014), 105-124.  doi: 10.1016/j.jedc.2013.11.001.  Google Scholar

[5]

M. J. Brennan and Y. Xia, Dynamic asset allocation under inflation, The Journal of Finance, 57 (2002), 1201-1238.   Google Scholar

[6]

A. Chen and L. Delong, Optimal investment for a defined-contribution pension scheme under a regime switching model, Astin Bulletin, 45 (2015), 397-419.  doi: 10.1017/asb.2014.33.  Google Scholar

[7]

Z. ChenZ. F. LiY. Zeng and J. Y. Sun, Asset allocation under loss aversion and minimum performance constraint in a DC pension plan with inflation risk, Insurance: Mathematics and Economics, 75 (2017), 137-150.  doi: 10.1016/j.insmatheco.2017.05.009.  Google Scholar

[8]

X. Y. CuiJ. J. GaoX. Li and D. Li, Optimal multi-period mean-variance policy under no-shorting constraint, European Journal of Operational Research, 234 (2014), 459-468.  doi: 10.1016/j.ejor.2013.02.040.  Google Scholar

[9]

X. Y. CuiX. Li and D. Li, Mean-variance policy for discrete-time cone constrained markets: The consistency in efficiency and minimum-variance signed supermartingale measure, Mathematical Finance, 27 (2017), 471-504.  doi: 10.1111/mafi.12093.  Google Scholar

[10]

P. DevolderM. Bosch Princep and I. Dominguez Fabian, Stochastic optimal control of annuity contracts, Insurance: Mathematics and Economics, 33 (2003), 227-238.  doi: 10.1016/S0167-6687(03)00136-7.  Google Scholar

[11]

Y. Dong and H. Zheng, Optimal investment of DC pension plan under short-selling constraints and portfolio insurance, Insurance: Mathematics and Economics, 85 (2019), 47-59.  doi: 10.1016/j.insmatheco.2018.12.005.  Google Scholar

[12]

Y. Dong and H. Zheng, Optimal investment with S-shaped utility and trading and Value at Risk constraints: An application to defined contribution pension plan, European Journal of Operational Research, 281 (2020), 341-356.  doi: 10.1016/j.ejor.2019.08.034.  Google Scholar

[13]

P. Emms, Lifetime investment and consumption using a defined-contribution pension scheme, Journal of Economic Dynamics and Control, 36 (2012), 1303-1321.  doi: 10.1016/j.jedc.2012.01.012.  Google Scholar

[14]

R. GerrardB. Hogaard and E. Vigna, Choosing the optimal annuitization time post retirement, Quantitative Finance, 12 (2012), 1143-1159.  doi: 10.1080/14697680903358248.  Google Scholar

[15]

N. W. Han and M. W. Hung, Optimal asset allocation for DC pension plans under inflation, Insurance: Mathematics and Economics, 51 (2012), 172-181.  doi: 10.1016/j.insmatheco.2012.03.003.  Google Scholar

[16]

N.-W. Han and M.-W. Hung, Optimal consumption, portfolio, and life insurance policies under interest rate and in ation risks, Insurance: Mathematics and Economics, 73 (2017), 54-67.  doi: 10.1016/j.insmatheco.2017.01.004.  Google Scholar

[17]

L. He and Z. X. Liang, Optimal assets allocation and benefit outgo policies of DC pension plan with compulsory conversion claims, Insurance: Mathematics and Economics, 61 (2015), 227-234.  doi: 10.1016/j.insmatheco.2015.01.006.  Google Scholar

[18]

A. K. Konicz and J. M. Mulvey, Optimal savings management for individuals with defined contribution pension plans, European Journal of Operational Research, 243 (2015), 233-247.  doi: 10.1016/j.ejor.2014.11.016.  Google Scholar

[19]

M. Kwak and B. H. Lim, Optimal portfolio selection with life insurance under inflation risk, Journal of Banking and Finance, 46 (2014), 59-71.   Google Scholar

[20]

D. Li and W. L. Ng, Optimal dynamic portfolio selection: Multiperiod mean-variance formulation, Mathematical Finance, 10 (2000), 387-406.  doi: 10.1111/1467-9965.00100.  Google Scholar

[21]

D. P. LiX. M. Rong and H. Zhao, Time-consistent reinsurance-investment strategy for a mean-variance insurer under stochastic interest rate model and inflation risk, Insurance: Mathematics and Economics, 64 (2015), 28-44.  doi: 10.1016/j.insmatheco.2015.05.003.  Google Scholar

[22]

X. LiX. Y. Zhou and A. E. B. Lim, Dynamic mean-variance portfolio selection with no-shorting constraints, SIAM Journal on Control and Optimization, 40 (2002), 1540-1555.  doi: 10.1137/S0363012900378504.  Google Scholar

[23]

D. G. Luenberger, Optimization by Vector Space Methods, John Wiley & Sons, Inc., New York-London-Sydney, 1969  Google Scholar

[24]

Q.-P. Ma, On optimal pension management in a stochastic framework with exponential utility, Insurance: Mathematics and Economics, 49 (2011), 61-69.  doi: 10.1016/j.insmatheco.2011.02.003.  Google Scholar

[25]

H. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91.   Google Scholar

[26]

C. MunkC. Sørensen and T. N. Vinther, Dynamic asset allocation under mean-reverting returns, stochastic interest rates, and inflation uncertainty: Are popular recommendations consistent with rational behavior?, International Review of Economics and Finance, 13 (2004), 141-166.   Google Scholar

[27]

M. Simutin, Cash holding and mutual fund performance, Review of Finance, 18 (2014), 1425-1464.  doi: 10.1093/rof/rft035.  Google Scholar

[28]

J. Y. SunZ. F. Li and Y. Zeng, Precommitment and equilibrium investment strategies for defined contribution pension plans under a jump-diffusion model, Insurance: Mathematics and Economics, 67 (2016), 158-172.  doi: 10.1016/j.insmatheco.2016.01.005.  Google Scholar

[29]

M.-L. TangS.-N. ChenG. C. Lai and T. P. Wu, Asset allocation for a DC pension fund under stochastic interest rates and inflation-protected guarantee, Insurance: Mathematics and Economics, 78 (2018), 87-104.  doi: 10.1016/j.insmatheco.2017.11.004.  Google Scholar

[30]

E. Vigna, On efficiency of mean-variance based portfolio selection in defined contribution pension schemes, Quantitative Finance, 14 (2014), 237-258.  doi: 10.1080/14697688.2012.708778.  Google Scholar

[31]

H. X. YaoY. Z. LaiQ. H. Ma and M. J. Jian, Asset allocation for a DC pension fund with stochastic income and mortality risk: A multi-period mean-variance framework, Insurance: Mathematics and Economics, 54 (2014), 84-92.  doi: 10.1016/j.insmatheco.2013.10.016.  Google Scholar

[32]

H. X. YaoZ. F. Li and D. Li, Multi-period mean-variance portfolio selection with stochastic interest rate and uncontrollable liability, European Journal of Operational Research, 252 (2016), 837-851.  doi: 10.1016/j.ejor.2016.01.049.  Google Scholar

[33]

H. X. Yao and Z. Yang adn P. Chen, Markowitz's mean-variance defined contribution pension fund management under inflation: A continuous-time model, Insurance: Mathematics and Economics, 53 (2013), 851-863.  doi: 10.1016/j.insmatheco.2013.10.002.  Google Scholar

[34]

A. Zhang and C.-O. Ewald, Optimal investment for a pension fund under inflation risk, Mathematical Methods of Operations Research, 71 (2010), 353-369.  doi: 10.1007/s00186-009-0294-5.  Google Scholar

[35]

F. Z. Zhang, Matrix Theory: Basic Results and Techniques, Second edition, Universitext. Springer, New York, 2011. doi: 10.1007/978-1-4614-1099-7.  Google Scholar

[36]

L. ZhangH. Zhang and H. X. Yao, Optimal investment management for a defined contribution pension fund under imperfect information, Insurance: Mathematics and Economics, 79 (2018), 210-224.  doi: 10.1016/j.insmatheco.2018.01.007.  Google Scholar

Figure 1.  Efficient frontier with various time horizons
Figure 2.  Inflation Vs non-inflation
Figure 3.  Efficient frontier's sensitivity to the variation of $ \phi $
Figure 4.  Impact of SG rate on efficient frontier
Figure 5.  Impact of the ratio $ a $ on efficient frontier
Table 1.  Salary growth rate
Date Total earnings ($ fanxiexian_myfh $) Growth rate
May-2012 1053.20 N/A
Nov-2012 1081.30 1.0267
May-2013 1105.00 1.0219
Nov-2013 1114.20 1.0083
May-2014 1123.00 1.0079
Nov-2014 1128.70 1.0051
May-2015 1136.90 1.0073
Nov-2015 1145.70 1.0077
May-2016 1160.90 1.0133
Nov-2016 1163.50 1.0022
$ q_k $(half yearly) N/A 1.0112
$ q_k $(quarterly) N/A 1.0056
Date Total earnings ($ fanxiexian_myfh $) Growth rate
May-2012 1053.20 N/A
Nov-2012 1081.30 1.0267
May-2013 1105.00 1.0219
Nov-2013 1114.20 1.0083
May-2014 1123.00 1.0079
Nov-2014 1128.70 1.0051
May-2015 1136.90 1.0073
Nov-2015 1145.70 1.0077
May-2016 1160.90 1.0133
Nov-2016 1163.50 1.0022
$ q_k $(half yearly) N/A 1.0112
$ q_k $(quarterly) N/A 1.0056
Table 2.  Log-inflation rate
$ \hat{\bar{I}} $ $ \hat{\sigma} $ $ \hat{\phi} $ Confidence interval for $ \hat{\phi} $ (95$ \% $)
0.54$ \% $ 0.45$ \% $ 0.5709 (0.4731, 0.6687)
$ \hat{\bar{I}} $ $ \hat{\sigma} $ $ \hat{\phi} $ Confidence interval for $ \hat{\phi} $ (95$ \% $)
0.54$ \% $ 0.45$ \% $ 0.5709 (0.4731, 0.6687)
Table 3.  TN yield
Year Weighted Average Issue Yield ($ \% $)
2009 3.1537
2010 4.4971
2011 4.5861
2012 3.4670
2013 2.6450
2014 2.5127
2015 2.0541
2016 1.8134
2017 1.5807
$ r_k^0 $(annually) 2.9233
$ r_k^0 $(quarterly) 0.7229
Year Weighted Average Issue Yield ($ \% $)
2009 3.1537
2010 4.4971
2011 4.5861
2012 3.4670
2013 2.6450
2014 2.5127
2015 2.0541
2016 1.8134
2017 1.5807
$ r_k^0 $(annually) 2.9233
$ r_k^0 $(quarterly) 0.7229
[1]

Xianping Wu, Xun Li, Zhongfei Li. A mean-field formulation for multi-period asset-liability mean-variance portfolio selection with probability constraints. Journal of Industrial & Management Optimization, 2018, 14 (1) : 249-265. doi: 10.3934/jimo.2017045

[2]

Zhen Wang, Sanyang Liu. Multi-period mean-variance portfolio selection with fixed and proportional transaction costs. Journal of Industrial & Management Optimization, 2013, 9 (3) : 643-656. doi: 10.3934/jimo.2013.9.643

[3]

Ning Zhang. A symmetric Gauss-Seidel based method for a class of multi-period mean-variance portfolio selection problems. Journal of Industrial & Management Optimization, 2020, 16 (2) : 991-1008. doi: 10.3934/jimo.2018189

[4]

Chuangwei Lin, Li Zeng, Huiling Wu. Multi-period portfolio optimization in a defined contribution pension plan during the decumulation phase. Journal of Industrial & Management Optimization, 2019, 15 (1) : 401-427. doi: 10.3934/jimo.2018059

[5]

Qian Zhao, Yang Shen, Jiaqin Wei. Mean-variance investment and contribution decisions for defined benefit pension plans in a stochastic framework. Journal of Industrial & Management Optimization, 2021, 17 (3) : 1147-1171. doi: 10.3934/jimo.2020015

[6]

Lihua Bian, Zhongfei Li, Haixiang Yao. Time-consistent strategy for a multi-period mean-variance asset-liability management problem with stochastic interest rate. Journal of Industrial & Management Optimization, 2021, 17 (3) : 1383-1410. doi: 10.3934/jimo.2020026

[7]

Zhiping Chen, Jia Liu, Gang Li. Time consistent policy of multi-period mean-variance problem in stochastic markets. Journal of Industrial & Management Optimization, 2016, 12 (1) : 229-249. doi: 10.3934/jimo.2016.12.229

[8]

Huiling Wu, Xiuguo Wang, Yuanyuan Liu, Li Zeng. Multi-period optimal investment choice post-retirement with inter-temporal restrictions in a defined contribution pension plan. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2857-2890. doi: 10.3934/jimo.2019084

[9]

Haixiang Yao, Zhongfei Li, Yongzeng Lai. Dynamic mean-variance asset allocation with stochastic interest rate and inflation rate. Journal of Industrial & Management Optimization, 2016, 12 (1) : 187-209. doi: 10.3934/jimo.2016.12.187

[10]

Yan Zeng, Zhongfei Li, Jingjun Liu. Optimal strategies of benchmark and mean-variance portfolio selection problems for insurers. Journal of Industrial & Management Optimization, 2010, 6 (3) : 483-496. doi: 10.3934/jimo.2010.6.483

[11]

Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial & Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130

[12]

Yingxu Tian, Junyi Guo, Zhongyang Sun. Optimal mean-variance reinsurance in a financial market with stochastic rate of return. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1887-1912. doi: 10.3934/jimo.2020051

[13]

Hao Chang, Jiaao Li, Hui Zhao. Robust optimal strategies of DC pension plans with stochastic volatility and stochastic income under mean-variance criteria. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021025

[14]

Huai-Nian Zhu, Cheng-Ke Zhang, Zhuo Jin. Continuous-time mean-variance asset-liability management with stochastic interest rates and inflation risks. Journal of Industrial & Management Optimization, 2020, 16 (2) : 813-834. doi: 10.3934/jimo.2018180

[15]

Ping Chen, Haixiang Yao. Continuous-time mean-variance portfolio selection with no-shorting constraints and regime-switching. Journal of Industrial & Management Optimization, 2020, 16 (2) : 531-551. doi: 10.3934/jimo.2018166

[16]

Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133

[17]

Lan Yi, Zhongfei Li, Duan Li. Multi-period portfolio selection for asset-liability management with uncertain investment horizon. Journal of Industrial & Management Optimization, 2008, 4 (3) : 535-552. doi: 10.3934/jimo.2008.4.535

[18]

Shuang Li, Chuong Luong, Francisca Angkola, Yonghong Wu. Optimal asset portfolio with stochastic volatility under the mean-variance utility with state-dependent risk aversion. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1521-1533. doi: 10.3934/jimo.2016.12.1521

[19]

Jingzhen Liu, Ka Fai Cedric Yiu, Alain Bensoussan. The optimal mean variance problem with inflation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 185-203. doi: 10.3934/dcdsb.2016.21.185

[20]

Liyuan Wang, Zhiping Chen, Peng Yang. Robust equilibrium control-measure policy for a DC pension plan with state-dependent risk aversion under mean-variance criterion. Journal of Industrial & Management Optimization, 2021, 17 (3) : 1203-1233. doi: 10.3934/jimo.2020018

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (143)
  • HTML views (348)
  • Cited by (0)

Other articles
by authors

[Back to Top]