[1]
|
A. Albert, Conditions for positive and nonnegative definiteness in terms of pseudoinverses, SIAM Journal on Applied Mathematics, 17 (1969), 434–440.
doi: 10.1137/0117041.
|
[2]
|
S. Basak and G. Chabakauri, Dynamic mean-variance asset allocation, The Review of Financial Studies, 23 (2010), 2970-3016.
|
[3]
|
D. Blake, D. Wright and Y. Zhang, Target-driven investing: Optimal investment strategies in defined contribution pension plans under loss aversion, Journal of Economic Dynamics and Control, 37 (2013), 195-209.
doi: 10.1016/j.jedc.2012.08.001.
|
[4]
|
D. Blake, D. Wright and Y. M. Zhang, Age-dependent investing: Optimal funding and investment strategies in defined contribution pension plans when members are rational life cycle financial planners, Journal of Economic Dynamics and Control, 38 (2014), 105-124.
doi: 10.1016/j.jedc.2013.11.001.
|
[5]
|
M. J. Brennan and Y. Xia, Dynamic asset allocation under inflation, The Journal of Finance, 57 (2002), 1201-1238.
|
[6]
|
A. Chen and L. Delong, Optimal investment for a defined-contribution pension scheme under a regime switching model, Astin Bulletin, 45 (2015), 397-419.
doi: 10.1017/asb.2014.33.
|
[7]
|
Z. Chen, Z. F. Li, Y. Zeng and J. Y. Sun, Asset allocation under loss aversion and minimum performance constraint in a DC pension plan with inflation risk, Insurance: Mathematics and Economics, 75 (2017), 137-150.
doi: 10.1016/j.insmatheco.2017.05.009.
|
[8]
|
X. Y. Cui, J. J. Gao, X. Li and D. Li, Optimal multi-period mean-variance policy under no-shorting constraint, European Journal of Operational Research, 234 (2014), 459-468.
doi: 10.1016/j.ejor.2013.02.040.
|
[9]
|
X. Y. Cui, X. Li and D. Li, Mean-variance policy for discrete-time cone constrained markets: The consistency in efficiency and minimum-variance signed supermartingale measure, Mathematical Finance, 27 (2017), 471-504.
doi: 10.1111/mafi.12093.
|
[10]
|
P. Devolder, M. Bosch Princep and I. Dominguez Fabian, Stochastic optimal control of annuity contracts, Insurance: Mathematics and Economics, 33 (2003), 227-238.
doi: 10.1016/S0167-6687(03)00136-7.
|
[11]
|
Y. Dong and H. Zheng, Optimal investment of DC pension plan under short-selling constraints and portfolio insurance, Insurance: Mathematics and Economics, 85 (2019), 47-59.
doi: 10.1016/j.insmatheco.2018.12.005.
|
[12]
|
Y. Dong and H. Zheng, Optimal investment with S-shaped utility and trading and Value at Risk constraints: An application to defined contribution pension plan, European Journal of Operational Research, 281 (2020), 341-356.
doi: 10.1016/j.ejor.2019.08.034.
|
[13]
|
P. Emms, Lifetime investment and consumption using a defined-contribution pension scheme, Journal of Economic Dynamics and Control, 36 (2012), 1303-1321.
doi: 10.1016/j.jedc.2012.01.012.
|
[14]
|
R. Gerrard, B. Hogaard and E. Vigna, Choosing the optimal annuitization time post retirement, Quantitative Finance, 12 (2012), 1143-1159.
doi: 10.1080/14697680903358248.
|
[15]
|
N. W. Han and M. W. Hung, Optimal asset allocation for DC pension plans under inflation, Insurance: Mathematics and Economics, 51 (2012), 172-181.
doi: 10.1016/j.insmatheco.2012.03.003.
|
[16]
|
N.-W. Han and M.-W. Hung, Optimal consumption, portfolio, and life insurance policies under interest rate and in ation risks, Insurance: Mathematics and Economics, 73 (2017), 54-67.
doi: 10.1016/j.insmatheco.2017.01.004.
|
[17]
|
L. He and Z. X. Liang, Optimal assets allocation and benefit outgo policies of DC pension plan with compulsory conversion claims, Insurance: Mathematics and Economics, 61 (2015), 227-234.
doi: 10.1016/j.insmatheco.2015.01.006.
|
[18]
|
A. K. Konicz and J. M. Mulvey, Optimal savings management for individuals with defined contribution pension plans, European Journal of Operational Research, 243 (2015), 233-247.
doi: 10.1016/j.ejor.2014.11.016.
|
[19]
|
M. Kwak and B. H. Lim, Optimal portfolio selection with life insurance under inflation risk, Journal of Banking and Finance, 46 (2014), 59-71.
|
[20]
|
D. Li and W. L. Ng, Optimal dynamic portfolio selection: Multiperiod mean-variance formulation, Mathematical Finance, 10 (2000), 387-406.
doi: 10.1111/1467-9965.00100.
|
[21]
|
D. P. Li, X. M. Rong and H. Zhao, Time-consistent reinsurance-investment strategy for a mean-variance insurer under stochastic interest rate model and inflation risk, Insurance: Mathematics and Economics, 64 (2015), 28-44.
doi: 10.1016/j.insmatheco.2015.05.003.
|
[22]
|
X. Li, X. Y. Zhou and A. E. B. Lim, Dynamic mean-variance portfolio selection with no-shorting constraints, SIAM Journal on Control and Optimization, 40 (2002), 1540-1555.
doi: 10.1137/S0363012900378504.
|
[23]
|
D. G. Luenberger, Optimization by Vector Space Methods, John Wiley & Sons, Inc., New York-London-Sydney, 1969
|
[24]
|
Q.-P. Ma, On optimal pension management in a stochastic framework with exponential utility, Insurance: Mathematics and Economics, 49 (2011), 61-69.
doi: 10.1016/j.insmatheco.2011.02.003.
|
[25]
|
H. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91.
|
[26]
|
C. Munk, C. Sørensen and T. N. Vinther, Dynamic asset allocation under mean-reverting returns, stochastic interest rates, and inflation uncertainty: Are popular recommendations consistent with rational behavior?, International Review of Economics and Finance, 13 (2004), 141-166.
|
[27]
|
M. Simutin, Cash holding and mutual fund performance, Review of Finance, 18 (2014), 1425-1464.
doi: 10.1093/rof/rft035.
|
[28]
|
J. Y. Sun, Z. F. Li and Y. Zeng, Precommitment and equilibrium investment strategies for defined contribution pension plans under a jump-diffusion model, Insurance: Mathematics and Economics, 67 (2016), 158-172.
doi: 10.1016/j.insmatheco.2016.01.005.
|
[29]
|
M.-L. Tang, S.-N. Chen, G. C. Lai and T. P. Wu, Asset allocation for a DC pension fund under stochastic interest rates and inflation-protected guarantee, Insurance: Mathematics and Economics, 78 (2018), 87-104.
doi: 10.1016/j.insmatheco.2017.11.004.
|
[30]
|
E. Vigna, On efficiency of mean-variance based portfolio selection in defined contribution pension schemes, Quantitative Finance, 14 (2014), 237-258.
doi: 10.1080/14697688.2012.708778.
|
[31]
|
H. X. Yao, Y. Z. Lai, Q. H. Ma and M. J. Jian, Asset allocation for a DC pension fund with stochastic income and mortality risk: A multi-period mean-variance framework, Insurance: Mathematics and Economics, 54 (2014), 84-92.
doi: 10.1016/j.insmatheco.2013.10.016.
|
[32]
|
H. X. Yao, Z. F. Li and D. Li, Multi-period mean-variance portfolio selection with stochastic interest rate and uncontrollable liability, European Journal of Operational Research, 252 (2016), 837-851.
doi: 10.1016/j.ejor.2016.01.049.
|
[33]
|
H. X. Yao and Z. Yang adn P. Chen, Markowitz's mean-variance defined contribution pension fund management under inflation: A continuous-time model, Insurance: Mathematics and Economics, 53 (2013), 851-863.
doi: 10.1016/j.insmatheco.2013.10.002.
|
[34]
|
A. Zhang and C.-O. Ewald, Optimal investment for a pension fund under inflation risk, Mathematical Methods of Operations Research, 71 (2010), 353-369.
doi: 10.1007/s00186-009-0294-5.
|
[35]
|
F. Z. Zhang, Matrix Theory: Basic Results and Techniques, Second edition, Universitext. Springer, New York, 2011.
doi: 10.1007/978-1-4614-1099-7.
|
[36]
|
L. Zhang, H. Zhang and H. X. Yao, Optimal investment management for a defined contribution pension fund under imperfect information, Insurance: Mathematics and Economics, 79 (2018), 210-224.
doi: 10.1016/j.insmatheco.2018.01.007.
|