
-
Previous Article
Modeling and computation of mean field game with compound carbon abatement mechanisms
- JIMO Home
- This Issue
-
Next Article
A Primal-dual algorithm for unfolding neutron energy spectrum from multiple activation foils
Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk
1. | School of Finance, Guangdong University of Foreign Studies, Guangzhou 510006, China |
2. | Actuarial Studies, Department of Economics, University of Melbourne, Australia |
3. | Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China |
This paper investigates a multi-period asset allocation problem for a defined contribution (DC) pension fund facing stochastic inflation under the Markowitz mean-variance criterion. The stochastic inflation rate is described by a discrete-time version of the Ornstein-Uhlenbeck process. To the best of our knowledge, the literature along the line of dynamic portfolio selection under inflation is dominated by continuous-time models. This paper is the first work to investigate the problem in a discrete-time setting. Using the techniques of state variable transformation, matrix theory, and dynamic programming, we derive the analytical expressions for the efficient investment strategy and the efficient frontier. Moreover, our model's exceptional cases are discussed, indicating that our theoretical results are consistent with the existing literature. Finally, the results established are tested through empirical studies based on Australia's data, where there is a typical DC pension system. The impacts of inflation, investment horizon, estimation error, and superannuation guarantee rate on the efficient frontier are illustrated.
References:
[1] |
A. Albert, Conditions for positive and nonnegative definiteness in terms of pseudoinverses, SIAM Journal on Applied Mathematics, 17 (1969), 434–440.
doi: 10.1137/0117041. |
[2] |
S. Basak and G. Chabakauri, Dynamic mean-variance asset allocation, The Review of Financial Studies, 23 (2010), 2970-3016. Google Scholar |
[3] |
D. Blake, D. Wright and Y. Zhang,
Target-driven investing: Optimal investment strategies in defined contribution pension plans under loss aversion, Journal of Economic Dynamics and Control, 37 (2013), 195-209.
doi: 10.1016/j.jedc.2012.08.001. |
[4] |
D. Blake, D. Wright and Y. M. Zhang,
Age-dependent investing: Optimal funding and investment strategies in defined contribution pension plans when members are rational life cycle financial planners, Journal of Economic Dynamics and Control, 38 (2014), 105-124.
doi: 10.1016/j.jedc.2013.11.001. |
[5] |
M. J. Brennan and Y. Xia, Dynamic asset allocation under inflation, The Journal of Finance, 57 (2002), 1201-1238. Google Scholar |
[6] |
A. Chen and L. Delong,
Optimal investment for a defined-contribution pension scheme under a regime switching model, Astin Bulletin, 45 (2015), 397-419.
doi: 10.1017/asb.2014.33. |
[7] |
Z. Chen, Z. F. Li, Y. Zeng and J. Y. Sun,
Asset allocation under loss aversion and minimum performance constraint in a DC pension plan with inflation risk, Insurance: Mathematics and Economics, 75 (2017), 137-150.
doi: 10.1016/j.insmatheco.2017.05.009. |
[8] |
X. Y. Cui, J. J. Gao, X. Li and D. Li,
Optimal multi-period mean-variance policy under no-shorting constraint, European Journal of Operational Research, 234 (2014), 459-468.
doi: 10.1016/j.ejor.2013.02.040. |
[9] |
X. Y. Cui, X. Li and D. Li,
Mean-variance policy for discrete-time cone constrained markets: The consistency in efficiency and minimum-variance signed supermartingale measure, Mathematical Finance, 27 (2017), 471-504.
doi: 10.1111/mafi.12093. |
[10] |
P. Devolder, M. Bosch Princep and I. Dominguez Fabian,
Stochastic optimal control of annuity contracts, Insurance: Mathematics and Economics, 33 (2003), 227-238.
doi: 10.1016/S0167-6687(03)00136-7. |
[11] |
Y. Dong and H. Zheng,
Optimal investment of DC pension plan under short-selling constraints and portfolio insurance, Insurance: Mathematics and Economics, 85 (2019), 47-59.
doi: 10.1016/j.insmatheco.2018.12.005. |
[12] |
Y. Dong and H. Zheng,
Optimal investment with S-shaped utility and trading and Value at Risk constraints: An application to defined contribution pension plan, European Journal of Operational Research, 281 (2020), 341-356.
doi: 10.1016/j.ejor.2019.08.034. |
[13] |
P. Emms,
Lifetime investment and consumption using a defined-contribution pension scheme, Journal of Economic Dynamics and Control, 36 (2012), 1303-1321.
doi: 10.1016/j.jedc.2012.01.012. |
[14] |
R. Gerrard, B. Hogaard and E. Vigna,
Choosing the optimal annuitization time post retirement, Quantitative Finance, 12 (2012), 1143-1159.
doi: 10.1080/14697680903358248. |
[15] |
N. W. Han and M. W. Hung,
Optimal asset allocation for DC pension plans under inflation, Insurance: Mathematics and Economics, 51 (2012), 172-181.
doi: 10.1016/j.insmatheco.2012.03.003. |
[16] |
N.-W. Han and M.-W. Hung,
Optimal consumption, portfolio, and life insurance policies under interest rate and in ation risks, Insurance: Mathematics and Economics, 73 (2017), 54-67.
doi: 10.1016/j.insmatheco.2017.01.004. |
[17] |
L. He and Z. X. Liang,
Optimal assets allocation and benefit outgo policies of DC pension plan with compulsory conversion claims, Insurance: Mathematics and Economics, 61 (2015), 227-234.
doi: 10.1016/j.insmatheco.2015.01.006. |
[18] |
A. K. Konicz and J. M. Mulvey,
Optimal savings management for individuals with defined contribution pension plans, European Journal of Operational Research, 243 (2015), 233-247.
doi: 10.1016/j.ejor.2014.11.016. |
[19] |
M. Kwak and B. H. Lim, Optimal portfolio selection with life insurance under inflation risk, Journal of Banking and Finance, 46 (2014), 59-71. Google Scholar |
[20] |
D. Li and W. L. Ng,
Optimal dynamic portfolio selection: Multiperiod mean-variance formulation, Mathematical Finance, 10 (2000), 387-406.
doi: 10.1111/1467-9965.00100. |
[21] |
D. P. Li, X. M. Rong and H. Zhao,
Time-consistent reinsurance-investment strategy for a mean-variance insurer under stochastic interest rate model and inflation risk, Insurance: Mathematics and Economics, 64 (2015), 28-44.
doi: 10.1016/j.insmatheco.2015.05.003. |
[22] |
X. Li, X. Y. Zhou and A. E. B. Lim,
Dynamic mean-variance portfolio selection with no-shorting constraints, SIAM Journal on Control and Optimization, 40 (2002), 1540-1555.
doi: 10.1137/S0363012900378504. |
[23] |
D. G. Luenberger, Optimization by Vector Space Methods, John Wiley & Sons, Inc., New York-London-Sydney, 1969 |
[24] |
Q.-P. Ma,
On optimal pension management in a stochastic framework with exponential utility, Insurance: Mathematics and Economics, 49 (2011), 61-69.
doi: 10.1016/j.insmatheco.2011.02.003. |
[25] |
H. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91. Google Scholar |
[26] |
C. Munk, C. Sørensen and T. N. Vinther, Dynamic asset allocation under mean-reverting returns, stochastic interest rates, and inflation uncertainty: Are popular recommendations consistent with rational behavior?, International Review of Economics and Finance, 13 (2004), 141-166. Google Scholar |
[27] |
M. Simutin,
Cash holding and mutual fund performance, Review of Finance, 18 (2014), 1425-1464.
doi: 10.1093/rof/rft035. |
[28] |
J. Y. Sun, Z. F. Li and Y. Zeng,
Precommitment and equilibrium investment strategies for defined contribution pension plans under a jump-diffusion model, Insurance: Mathematics and Economics, 67 (2016), 158-172.
doi: 10.1016/j.insmatheco.2016.01.005. |
[29] |
M.-L. Tang, S.-N. Chen, G. C. Lai and T. P. Wu,
Asset allocation for a DC pension fund under stochastic interest rates and inflation-protected guarantee, Insurance: Mathematics and Economics, 78 (2018), 87-104.
doi: 10.1016/j.insmatheco.2017.11.004. |
[30] |
E. Vigna,
On efficiency of mean-variance based portfolio selection in defined contribution pension schemes, Quantitative Finance, 14 (2014), 237-258.
doi: 10.1080/14697688.2012.708778. |
[31] |
H. X. Yao, Y. Z. Lai, Q. H. Ma and M. J. Jian,
Asset allocation for a DC pension fund with stochastic income and mortality risk: A multi-period mean-variance framework, Insurance: Mathematics and Economics, 54 (2014), 84-92.
doi: 10.1016/j.insmatheco.2013.10.016. |
[32] |
H. X. Yao, Z. F. Li and D. Li,
Multi-period mean-variance portfolio selection with stochastic interest rate and uncontrollable liability, European Journal of Operational Research, 252 (2016), 837-851.
doi: 10.1016/j.ejor.2016.01.049. |
[33] |
H. X. Yao and Z. Yang adn P. Chen,
Markowitz's mean-variance defined contribution pension fund management under inflation: A continuous-time model, Insurance: Mathematics and Economics, 53 (2013), 851-863.
doi: 10.1016/j.insmatheco.2013.10.002. |
[34] |
A. Zhang and C.-O. Ewald,
Optimal investment for a pension fund under inflation risk, Mathematical Methods of Operations Research, 71 (2010), 353-369.
doi: 10.1007/s00186-009-0294-5. |
[35] |
F. Z. Zhang, Matrix Theory: Basic Results and Techniques, Second edition, Universitext. Springer, New York, 2011.
doi: 10.1007/978-1-4614-1099-7. |
[36] |
L. Zhang, H. Zhang and H. X. Yao,
Optimal investment management for a defined contribution pension fund under imperfect information, Insurance: Mathematics and Economics, 79 (2018), 210-224.
doi: 10.1016/j.insmatheco.2018.01.007. |
show all references
References:
[1] |
A. Albert, Conditions for positive and nonnegative definiteness in terms of pseudoinverses, SIAM Journal on Applied Mathematics, 17 (1969), 434–440.
doi: 10.1137/0117041. |
[2] |
S. Basak and G. Chabakauri, Dynamic mean-variance asset allocation, The Review of Financial Studies, 23 (2010), 2970-3016. Google Scholar |
[3] |
D. Blake, D. Wright and Y. Zhang,
Target-driven investing: Optimal investment strategies in defined contribution pension plans under loss aversion, Journal of Economic Dynamics and Control, 37 (2013), 195-209.
doi: 10.1016/j.jedc.2012.08.001. |
[4] |
D. Blake, D. Wright and Y. M. Zhang,
Age-dependent investing: Optimal funding and investment strategies in defined contribution pension plans when members are rational life cycle financial planners, Journal of Economic Dynamics and Control, 38 (2014), 105-124.
doi: 10.1016/j.jedc.2013.11.001. |
[5] |
M. J. Brennan and Y. Xia, Dynamic asset allocation under inflation, The Journal of Finance, 57 (2002), 1201-1238. Google Scholar |
[6] |
A. Chen and L. Delong,
Optimal investment for a defined-contribution pension scheme under a regime switching model, Astin Bulletin, 45 (2015), 397-419.
doi: 10.1017/asb.2014.33. |
[7] |
Z. Chen, Z. F. Li, Y. Zeng and J. Y. Sun,
Asset allocation under loss aversion and minimum performance constraint in a DC pension plan with inflation risk, Insurance: Mathematics and Economics, 75 (2017), 137-150.
doi: 10.1016/j.insmatheco.2017.05.009. |
[8] |
X. Y. Cui, J. J. Gao, X. Li and D. Li,
Optimal multi-period mean-variance policy under no-shorting constraint, European Journal of Operational Research, 234 (2014), 459-468.
doi: 10.1016/j.ejor.2013.02.040. |
[9] |
X. Y. Cui, X. Li and D. Li,
Mean-variance policy for discrete-time cone constrained markets: The consistency in efficiency and minimum-variance signed supermartingale measure, Mathematical Finance, 27 (2017), 471-504.
doi: 10.1111/mafi.12093. |
[10] |
P. Devolder, M. Bosch Princep and I. Dominguez Fabian,
Stochastic optimal control of annuity contracts, Insurance: Mathematics and Economics, 33 (2003), 227-238.
doi: 10.1016/S0167-6687(03)00136-7. |
[11] |
Y. Dong and H. Zheng,
Optimal investment of DC pension plan under short-selling constraints and portfolio insurance, Insurance: Mathematics and Economics, 85 (2019), 47-59.
doi: 10.1016/j.insmatheco.2018.12.005. |
[12] |
Y. Dong and H. Zheng,
Optimal investment with S-shaped utility and trading and Value at Risk constraints: An application to defined contribution pension plan, European Journal of Operational Research, 281 (2020), 341-356.
doi: 10.1016/j.ejor.2019.08.034. |
[13] |
P. Emms,
Lifetime investment and consumption using a defined-contribution pension scheme, Journal of Economic Dynamics and Control, 36 (2012), 1303-1321.
doi: 10.1016/j.jedc.2012.01.012. |
[14] |
R. Gerrard, B. Hogaard and E. Vigna,
Choosing the optimal annuitization time post retirement, Quantitative Finance, 12 (2012), 1143-1159.
doi: 10.1080/14697680903358248. |
[15] |
N. W. Han and M. W. Hung,
Optimal asset allocation for DC pension plans under inflation, Insurance: Mathematics and Economics, 51 (2012), 172-181.
doi: 10.1016/j.insmatheco.2012.03.003. |
[16] |
N.-W. Han and M.-W. Hung,
Optimal consumption, portfolio, and life insurance policies under interest rate and in ation risks, Insurance: Mathematics and Economics, 73 (2017), 54-67.
doi: 10.1016/j.insmatheco.2017.01.004. |
[17] |
L. He and Z. X. Liang,
Optimal assets allocation and benefit outgo policies of DC pension plan with compulsory conversion claims, Insurance: Mathematics and Economics, 61 (2015), 227-234.
doi: 10.1016/j.insmatheco.2015.01.006. |
[18] |
A. K. Konicz and J. M. Mulvey,
Optimal savings management for individuals with defined contribution pension plans, European Journal of Operational Research, 243 (2015), 233-247.
doi: 10.1016/j.ejor.2014.11.016. |
[19] |
M. Kwak and B. H. Lim, Optimal portfolio selection with life insurance under inflation risk, Journal of Banking and Finance, 46 (2014), 59-71. Google Scholar |
[20] |
D. Li and W. L. Ng,
Optimal dynamic portfolio selection: Multiperiod mean-variance formulation, Mathematical Finance, 10 (2000), 387-406.
doi: 10.1111/1467-9965.00100. |
[21] |
D. P. Li, X. M. Rong and H. Zhao,
Time-consistent reinsurance-investment strategy for a mean-variance insurer under stochastic interest rate model and inflation risk, Insurance: Mathematics and Economics, 64 (2015), 28-44.
doi: 10.1016/j.insmatheco.2015.05.003. |
[22] |
X. Li, X. Y. Zhou and A. E. B. Lim,
Dynamic mean-variance portfolio selection with no-shorting constraints, SIAM Journal on Control and Optimization, 40 (2002), 1540-1555.
doi: 10.1137/S0363012900378504. |
[23] |
D. G. Luenberger, Optimization by Vector Space Methods, John Wiley & Sons, Inc., New York-London-Sydney, 1969 |
[24] |
Q.-P. Ma,
On optimal pension management in a stochastic framework with exponential utility, Insurance: Mathematics and Economics, 49 (2011), 61-69.
doi: 10.1016/j.insmatheco.2011.02.003. |
[25] |
H. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91. Google Scholar |
[26] |
C. Munk, C. Sørensen and T. N. Vinther, Dynamic asset allocation under mean-reverting returns, stochastic interest rates, and inflation uncertainty: Are popular recommendations consistent with rational behavior?, International Review of Economics and Finance, 13 (2004), 141-166. Google Scholar |
[27] |
M. Simutin,
Cash holding and mutual fund performance, Review of Finance, 18 (2014), 1425-1464.
doi: 10.1093/rof/rft035. |
[28] |
J. Y. Sun, Z. F. Li and Y. Zeng,
Precommitment and equilibrium investment strategies for defined contribution pension plans under a jump-diffusion model, Insurance: Mathematics and Economics, 67 (2016), 158-172.
doi: 10.1016/j.insmatheco.2016.01.005. |
[29] |
M.-L. Tang, S.-N. Chen, G. C. Lai and T. P. Wu,
Asset allocation for a DC pension fund under stochastic interest rates and inflation-protected guarantee, Insurance: Mathematics and Economics, 78 (2018), 87-104.
doi: 10.1016/j.insmatheco.2017.11.004. |
[30] |
E. Vigna,
On efficiency of mean-variance based portfolio selection in defined contribution pension schemes, Quantitative Finance, 14 (2014), 237-258.
doi: 10.1080/14697688.2012.708778. |
[31] |
H. X. Yao, Y. Z. Lai, Q. H. Ma and M. J. Jian,
Asset allocation for a DC pension fund with stochastic income and mortality risk: A multi-period mean-variance framework, Insurance: Mathematics and Economics, 54 (2014), 84-92.
doi: 10.1016/j.insmatheco.2013.10.016. |
[32] |
H. X. Yao, Z. F. Li and D. Li,
Multi-period mean-variance portfolio selection with stochastic interest rate and uncontrollable liability, European Journal of Operational Research, 252 (2016), 837-851.
doi: 10.1016/j.ejor.2016.01.049. |
[33] |
H. X. Yao and Z. Yang adn P. Chen,
Markowitz's mean-variance defined contribution pension fund management under inflation: A continuous-time model, Insurance: Mathematics and Economics, 53 (2013), 851-863.
doi: 10.1016/j.insmatheco.2013.10.002. |
[34] |
A. Zhang and C.-O. Ewald,
Optimal investment for a pension fund under inflation risk, Mathematical Methods of Operations Research, 71 (2010), 353-369.
doi: 10.1007/s00186-009-0294-5. |
[35] |
F. Z. Zhang, Matrix Theory: Basic Results and Techniques, Second edition, Universitext. Springer, New York, 2011.
doi: 10.1007/978-1-4614-1099-7. |
[36] |
L. Zhang, H. Zhang and H. X. Yao,
Optimal investment management for a defined contribution pension fund under imperfect information, Insurance: Mathematics and Economics, 79 (2018), 210-224.
doi: 10.1016/j.insmatheco.2018.01.007. |





Date | Total earnings ( |
Growth rate |
May-2012 | 1053.20 | N/A |
Nov-2012 | 1081.30 | 1.0267 |
May-2013 | 1105.00 | 1.0219 |
Nov-2013 | 1114.20 | 1.0083 |
May-2014 | 1123.00 | 1.0079 |
Nov-2014 | 1128.70 | 1.0051 |
May-2015 | 1136.90 | 1.0073 |
Nov-2015 | 1145.70 | 1.0077 |
May-2016 | 1160.90 | 1.0133 |
Nov-2016 | 1163.50 | 1.0022 |
N/A | 1.0112 | |
N/A | 1.0056 |
Date | Total earnings ( |
Growth rate |
May-2012 | 1053.20 | N/A |
Nov-2012 | 1081.30 | 1.0267 |
May-2013 | 1105.00 | 1.0219 |
Nov-2013 | 1114.20 | 1.0083 |
May-2014 | 1123.00 | 1.0079 |
Nov-2014 | 1128.70 | 1.0051 |
May-2015 | 1136.90 | 1.0073 |
Nov-2015 | 1145.70 | 1.0077 |
May-2016 | 1160.90 | 1.0133 |
Nov-2016 | 1163.50 | 1.0022 |
N/A | 1.0112 | |
N/A | 1.0056 |
Confidence interval for |
|||
0.54 |
0.45 |
0.5709 | (0.4731, 0.6687) |
Confidence interval for |
|||
0.54 |
0.45 |
0.5709 | (0.4731, 0.6687) |
Year | Weighted Average Issue Yield ( |
2009 | 3.1537 |
2010 | 4.4971 |
2011 | 4.5861 |
2012 | 3.4670 |
2013 | 2.6450 |
2014 | 2.5127 |
2015 | 2.0541 |
2016 | 1.8134 |
2017 | 1.5807 |
2.9233 | |
0.7229 |
Year | Weighted Average Issue Yield ( |
2009 | 3.1537 |
2010 | 4.4971 |
2011 | 4.5861 |
2012 | 3.4670 |
2013 | 2.6450 |
2014 | 2.5127 |
2015 | 2.0541 |
2016 | 1.8134 |
2017 | 1.5807 |
2.9233 | |
0.7229 |
[1] |
Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial & Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130 |
[2] |
Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133 |
[3] |
Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117 |
[4] |
Junkee Jeon. Finite horizon portfolio selection problems with stochastic borrowing constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 733-763. doi: 10.3934/jimo.2019132 |
[5] |
Bing Liu, Ming Zhou. Robust portfolio selection for individuals: Minimizing the probability of lifetime ruin. Journal of Industrial & Management Optimization, 2021, 17 (2) : 937-952. doi: 10.3934/jimo.2020005 |
[6] |
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106 |
[7] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[8] |
Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026 |
[9] |
Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020353 |
[10] |
He Zhang, John Harlim, Xiantao Li. Estimating linear response statistics using orthogonal polynomials: An RKHS formulation. Foundations of Data Science, 2020, 2 (4) : 443-485. doi: 10.3934/fods.2020021 |
[11] |
Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304 |
[12] |
Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167 |
[13] |
Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020 doi: 10.3934/fods.2020018 |
[14] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[15] |
Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020465 |
[16] |
Jie Shen, Nan Zheng. Efficient and accurate sav schemes for the generalized Zakharov systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 645-666. doi: 10.3934/dcdsb.2020262 |
[17] |
Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, Tanmay Choudhury. Secure and efficient multiparty private set intersection cardinality. Advances in Mathematics of Communications, 2021, 15 (2) : 365-386. doi: 10.3934/amc.2020071 |
[18] |
Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020288 |
[19] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[20] |
Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020054 |
2019 Impact Factor: 1.366
Tools
Article outline
Figures and Tables
[Back to Top]