-
Previous Article
Equilibrium periodic dividend strategies with non-exponential discounting for spectrally positive Lévy processes
- JIMO Home
- This Issue
-
Next Article
A $ {BMAP/BMSP/1} $ queue with Markov dependent arrival and Markov dependent service batches
Simultaneous optimal predictions under two seemingly unrelated linear random-effects models
College of Business and Economics, Shanghai Business School, Shanghai, China |
This paper considers simultaneous optimal prediction and estimation problems in the context of linear random-effects models. Assume a pair of seemingly unrelated linear random-effects models (SULREMs) with the random-effects and the error terms correlated. Our aim is to find analytical formulas for calculating best linear unbiased predictors (BLUPs) of all unknown parameters in the two models by means of solving a constrained quadratic matrix optimization problem in the Löwner sense. We also present a variety of theoretical and statistical properties of the BLUPs under the two models.
References:
[1] |
N. K. Bansal and K. J. Miescke,
Simultaneous selection and estimation in general linear models, J. Stat. Plann. Inference, 104 (2002), 377-390.
doi: 10.1016/S0378-3758(01)00262-2. |
[2] |
A. S. Bryk, S. W. Raudenbush and R. T. Congdon, Hierarchical Linear and Nonlinear Modeling with HLM/2L and HLM/3L Programs, Scientific Software International, Chicago, IL, 1996. Google Scholar |
[3] |
A. Chaturvedi, S. Kesarwani and R. Chandra, Simultaneous prediction based on shrinkage estimator, in: Recent Advances in Linear Models and Related Areas, Essays in Honour of Helge Toutenburg, Springer, 2008, pp. 181–204.
doi: 10.1007/978-3-7908-2064-5_10. |
[4] |
A. Chaturvedi, A. T. K. Wan and S. P. Singh,
Improved multivariate prediction in a general linear model with an unknown error covariance matrix, J. Multivariate Anal., 83 (2002), 166-182.
doi: 10.1006/jmva.2001.2042. |
[5] |
M. Dube and V. Manocha,
Simultaneous prediction in restricted regression models, J. Appl. Statist. Sci., 11 (2002), 277-288.
|
[6] |
B. Effron and C. Morris, Combining possibly related estimation problems (with discussion), J. Roy. Stat. Soc. B, 35 (1973), 379–421. https://www.jstor.org/stable/2985106 |
[7] |
S. Gan, C. Lu and Y. Tian,
Computation and comparison of estimators under different linear random-effects models, Commun. Statist. Simul. Comput., 49 (2020), 1210-1222.
doi: 10.1080/03610918.2018.1493507. |
[8] | A. Gelman and J. Hill, Data Analysis Using Regression and Multilevel/Hierarchical Models, Cambridge University Press, 2007. Google Scholar |
[9] |
H. Goldstein and J. D. Leeuw, Handbook of Multilevel Analysis, Springer New York, 2008. Google Scholar |
[10] |
C. A. Gotway and N. Cressie,
Improved multivariate prediction under a general linear model, J. Multivariate Anal., 45 (1993), 56-72.
doi: 10.1006/jmva.1993.1026. |
[11] |
N. Güler and M. E. Büyükkaya, Rank and inertia formulas for covariance matrices of BLUPs in general linear mixed models, Commun. Statist. Theor. Meth., 2020.
doi: 10.1080/03610926.2019.1599950. |
[12] |
S. J. Haslett and S. Puntanen,
Equality of BLUEs or BLUPs under two linear models using stochastic restrictions, Stat. Papers, 51 (2010), 465-475.
doi: 10.1007/s00362-009-0219-7. |
[13] |
S. J. Haslett and S. Puntanen,
A note on the equality of the BLUPs for new observations under two linear models, Acta Comm. Univ. Tartu. Math., 14 (2010), 27-33.
|
[14] |
S. J. Haslett and S. Puntanen,
On the equality of the BLUPs under two linear mixed models, Metrika, 74 (2011), 381-395.
doi: 10.1007/s00184-010-0308-6. |
[15] |
J. Hou and B. Jiang,
Predictions and estimations under a group of linear models with random coefficients, Comm. Statist. Simul. Comput., 47 (2018), 510-525.
doi: 10.1080/03610918.2017.1283704. |
[16] |
H. Jiang, J. Qian and Y. Sun, Best linear unbiased predictors and estimators under a pair of constrained seemingly unrelated regression models, Stat. Probab. Lett., 158 (2020), 108669.
doi: 10.1016/j.spl.2019.108669. |
[17] |
C. Lu, Y. Sun and Y. Tian,
A comparison between two competing fixed parameter constrained general linear models with new regressors, Statistics, 52 (2018), 769-781.
doi: 10.1080/02331888.2018.1469021. |
[18] |
C. Lu, Y. Sun and Y. Tian,
Two competing linear random-effects models and their connections, Stat. Papers, 59 (2018), 1101-1115.
doi: 10.1007/s00362-016-0806-3. |
[19] |
A. Markiewicz and S. Puntanen,
All about the $\perp$ with its applications in the linear statistical models, Open Math., 13 (2015), 33-50.
doi: 10.1515/math-2015-0005. |
[20] |
S. K. Mitra, Generalized inverse of matrices and applications to linear models, in: Handbook of Statistics, P.K. Krishnaiah, ed., Vol. 1, North-Holland, pp. 471–512, 1980. Google Scholar |
[21] |
R. Penrose,
A generalized inverse for matrices, Proc. Cambridge Phil. Soc., 51 (1955), 406-413.
doi: 10.1017/S0305004100030401. |
[22] |
S. Puntanen, G. P. H. Styan and J. Isotalo, Matrix Tricks for Linear Statistical Models, Our Personal Top Twenty, Springer, Berlin, 2011.
doi: 10.1007/978-3-642-10473-2. |
[23] |
C. R. Rao,
Unified theory of linear estimation, Sankhyā, Ser. A, 33 (1971), 371-394.
|
[24] |
C. R. Rao,
Representations of best linear unbiased estimators in the Gauss–Markoff model with a singular dispersion matrix, J. Multivariate Anal., 3 (1973), 276-292.
doi: 10.1016/0047-259X(73)90042-0. |
[25] |
C. R. Rao,
Simultaneous estimation of parameters in different linear models and applications to biometric problems, Biometrics, 31 (1975), 545-554.
doi: 10.2307/2529436. |
[26] |
C. R. Rao, A lemma on optimization of matrix function and a review of the unified theory of linear estimation, in: Statistical Data Analysis and Inference, Y. Dodge (ed.), North Holland, 1989, pp. 397–417. |
[27] |
C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and Its Applications, Wiley, New York, 1971., |
[28] |
C. R. Rao, H. Toutenburg, Shalabh and C. Heumann, Linear Models and Generalizations: Least Squares and Alternatives, 3rd edition, Springer, Berlin, 2008. |
[29] |
S. W. Raudenbush and A. S. Bryk, Hierarchical Linear Models: Applications and Data Analysis Methods, 2nd edition, Sage, Thousand Oaks, 2002. Google Scholar |
[30] |
Sh alabh, Performance of Stein-rule procedure for simultaneous prediction of actual and average values of study variable in linear regression models, Bull. Internat. Stat. Instit., 56 (1995), 1375-1390. Google Scholar |
[31] |
Y. Sun, B. Jiang and H. Jiang,
Computations of predictors/estimators under a linear random-effects model with parameter restrictions, Comm. Statist. Theory Meth., 48 (2019), 3482-3497.
doi: 10.1080/03610926.2018.1476714. |
[32] |
Y. Sun, H. Jiang and Y. Tian, A prediction analysis in a constrained multivariate general linear model with future observations, Comm. Statist. Theory Meth., 2020.
doi: 10.1080/03610926.2019.1634819. |
[33] |
Y. Tian,
A new derivation of BLUPs under random-effects model, Metrika, 78 (2015), 905-918.
doi: 10.1007/s00184-015-0533-0. |
[34] |
Y. Tian,
A matrix handling of predictions under a general linear random-effects model with new observations, Electron. J. Linear Algebra, 29 (2015), 30-45.
doi: 10.13001/1081-3810.2895. |
[35] |
Y. Tian,
Transformation approaches of linear random-effects models, Statist. Meth. Appl., 26 (2017), 583-608.
doi: 10.1007/s10260-017-0381-3. |
[36] |
Y. Tian and B. Jiang,
An algebraic study of BLUPs under two linear random-effects models with correlated covariance matrices, Linear Multilinear Algebra, 64 (2016), 2351-2367.
doi: 10.1080/03081087.2016.1155533. |
[37] |
Y. Tian and J. Wang,
Some remarks on fundamental formulas and facts in the statistical analysis of a constrained general linear model, Commun. Statist. Theory Meth., 49 (2020), 1201-1216.
doi: 10.1080/03610926.2018.1554138. |
[38] |
H. Toutenburg, Prior Information in Linear Models., Wiley, New York, 1982. |
[39] |
H. Toutenburg and Sh alabh,
Predictive performance of the methods of restricted and mixed regression estimators, Biometr. J., 38 (1996), 951-959.
|
[40] |
H. Toutenburg and Sh alabh,
Improved prediction in linear regression model with stochastic linear constraints, Biometr. J., 42 (2000), 71-86.
doi: 10.1002/(SICI)1521-4036(200001)42:1<71::AID-BIMJ71>3.0.CO;2-H. |
show all references
References:
[1] |
N. K. Bansal and K. J. Miescke,
Simultaneous selection and estimation in general linear models, J. Stat. Plann. Inference, 104 (2002), 377-390.
doi: 10.1016/S0378-3758(01)00262-2. |
[2] |
A. S. Bryk, S. W. Raudenbush and R. T. Congdon, Hierarchical Linear and Nonlinear Modeling with HLM/2L and HLM/3L Programs, Scientific Software International, Chicago, IL, 1996. Google Scholar |
[3] |
A. Chaturvedi, S. Kesarwani and R. Chandra, Simultaneous prediction based on shrinkage estimator, in: Recent Advances in Linear Models and Related Areas, Essays in Honour of Helge Toutenburg, Springer, 2008, pp. 181–204.
doi: 10.1007/978-3-7908-2064-5_10. |
[4] |
A. Chaturvedi, A. T. K. Wan and S. P. Singh,
Improved multivariate prediction in a general linear model with an unknown error covariance matrix, J. Multivariate Anal., 83 (2002), 166-182.
doi: 10.1006/jmva.2001.2042. |
[5] |
M. Dube and V. Manocha,
Simultaneous prediction in restricted regression models, J. Appl. Statist. Sci., 11 (2002), 277-288.
|
[6] |
B. Effron and C. Morris, Combining possibly related estimation problems (with discussion), J. Roy. Stat. Soc. B, 35 (1973), 379–421. https://www.jstor.org/stable/2985106 |
[7] |
S. Gan, C. Lu and Y. Tian,
Computation and comparison of estimators under different linear random-effects models, Commun. Statist. Simul. Comput., 49 (2020), 1210-1222.
doi: 10.1080/03610918.2018.1493507. |
[8] | A. Gelman and J. Hill, Data Analysis Using Regression and Multilevel/Hierarchical Models, Cambridge University Press, 2007. Google Scholar |
[9] |
H. Goldstein and J. D. Leeuw, Handbook of Multilevel Analysis, Springer New York, 2008. Google Scholar |
[10] |
C. A. Gotway and N. Cressie,
Improved multivariate prediction under a general linear model, J. Multivariate Anal., 45 (1993), 56-72.
doi: 10.1006/jmva.1993.1026. |
[11] |
N. Güler and M. E. Büyükkaya, Rank and inertia formulas for covariance matrices of BLUPs in general linear mixed models, Commun. Statist. Theor. Meth., 2020.
doi: 10.1080/03610926.2019.1599950. |
[12] |
S. J. Haslett and S. Puntanen,
Equality of BLUEs or BLUPs under two linear models using stochastic restrictions, Stat. Papers, 51 (2010), 465-475.
doi: 10.1007/s00362-009-0219-7. |
[13] |
S. J. Haslett and S. Puntanen,
A note on the equality of the BLUPs for new observations under two linear models, Acta Comm. Univ. Tartu. Math., 14 (2010), 27-33.
|
[14] |
S. J. Haslett and S. Puntanen,
On the equality of the BLUPs under two linear mixed models, Metrika, 74 (2011), 381-395.
doi: 10.1007/s00184-010-0308-6. |
[15] |
J. Hou and B. Jiang,
Predictions and estimations under a group of linear models with random coefficients, Comm. Statist. Simul. Comput., 47 (2018), 510-525.
doi: 10.1080/03610918.2017.1283704. |
[16] |
H. Jiang, J. Qian and Y. Sun, Best linear unbiased predictors and estimators under a pair of constrained seemingly unrelated regression models, Stat. Probab. Lett., 158 (2020), 108669.
doi: 10.1016/j.spl.2019.108669. |
[17] |
C. Lu, Y. Sun and Y. Tian,
A comparison between two competing fixed parameter constrained general linear models with new regressors, Statistics, 52 (2018), 769-781.
doi: 10.1080/02331888.2018.1469021. |
[18] |
C. Lu, Y. Sun and Y. Tian,
Two competing linear random-effects models and their connections, Stat. Papers, 59 (2018), 1101-1115.
doi: 10.1007/s00362-016-0806-3. |
[19] |
A. Markiewicz and S. Puntanen,
All about the $\perp$ with its applications in the linear statistical models, Open Math., 13 (2015), 33-50.
doi: 10.1515/math-2015-0005. |
[20] |
S. K. Mitra, Generalized inverse of matrices and applications to linear models, in: Handbook of Statistics, P.K. Krishnaiah, ed., Vol. 1, North-Holland, pp. 471–512, 1980. Google Scholar |
[21] |
R. Penrose,
A generalized inverse for matrices, Proc. Cambridge Phil. Soc., 51 (1955), 406-413.
doi: 10.1017/S0305004100030401. |
[22] |
S. Puntanen, G. P. H. Styan and J. Isotalo, Matrix Tricks for Linear Statistical Models, Our Personal Top Twenty, Springer, Berlin, 2011.
doi: 10.1007/978-3-642-10473-2. |
[23] |
C. R. Rao,
Unified theory of linear estimation, Sankhyā, Ser. A, 33 (1971), 371-394.
|
[24] |
C. R. Rao,
Representations of best linear unbiased estimators in the Gauss–Markoff model with a singular dispersion matrix, J. Multivariate Anal., 3 (1973), 276-292.
doi: 10.1016/0047-259X(73)90042-0. |
[25] |
C. R. Rao,
Simultaneous estimation of parameters in different linear models and applications to biometric problems, Biometrics, 31 (1975), 545-554.
doi: 10.2307/2529436. |
[26] |
C. R. Rao, A lemma on optimization of matrix function and a review of the unified theory of linear estimation, in: Statistical Data Analysis and Inference, Y. Dodge (ed.), North Holland, 1989, pp. 397–417. |
[27] |
C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and Its Applications, Wiley, New York, 1971., |
[28] |
C. R. Rao, H. Toutenburg, Shalabh and C. Heumann, Linear Models and Generalizations: Least Squares and Alternatives, 3rd edition, Springer, Berlin, 2008. |
[29] |
S. W. Raudenbush and A. S. Bryk, Hierarchical Linear Models: Applications and Data Analysis Methods, 2nd edition, Sage, Thousand Oaks, 2002. Google Scholar |
[30] |
Sh alabh, Performance of Stein-rule procedure for simultaneous prediction of actual and average values of study variable in linear regression models, Bull. Internat. Stat. Instit., 56 (1995), 1375-1390. Google Scholar |
[31] |
Y. Sun, B. Jiang and H. Jiang,
Computations of predictors/estimators under a linear random-effects model with parameter restrictions, Comm. Statist. Theory Meth., 48 (2019), 3482-3497.
doi: 10.1080/03610926.2018.1476714. |
[32] |
Y. Sun, H. Jiang and Y. Tian, A prediction analysis in a constrained multivariate general linear model with future observations, Comm. Statist. Theory Meth., 2020.
doi: 10.1080/03610926.2019.1634819. |
[33] |
Y. Tian,
A new derivation of BLUPs under random-effects model, Metrika, 78 (2015), 905-918.
doi: 10.1007/s00184-015-0533-0. |
[34] |
Y. Tian,
A matrix handling of predictions under a general linear random-effects model with new observations, Electron. J. Linear Algebra, 29 (2015), 30-45.
doi: 10.13001/1081-3810.2895. |
[35] |
Y. Tian,
Transformation approaches of linear random-effects models, Statist. Meth. Appl., 26 (2017), 583-608.
doi: 10.1007/s10260-017-0381-3. |
[36] |
Y. Tian and B. Jiang,
An algebraic study of BLUPs under two linear random-effects models with correlated covariance matrices, Linear Multilinear Algebra, 64 (2016), 2351-2367.
doi: 10.1080/03081087.2016.1155533. |
[37] |
Y. Tian and J. Wang,
Some remarks on fundamental formulas and facts in the statistical analysis of a constrained general linear model, Commun. Statist. Theory Meth., 49 (2020), 1201-1216.
doi: 10.1080/03610926.2018.1554138. |
[38] |
H. Toutenburg, Prior Information in Linear Models., Wiley, New York, 1982. |
[39] |
H. Toutenburg and Sh alabh,
Predictive performance of the methods of restricted and mixed regression estimators, Biometr. J., 38 (1996), 951-959.
|
[40] |
H. Toutenburg and Sh alabh,
Improved prediction in linear regression model with stochastic linear constraints, Biometr. J., 42 (2000), 71-86.
doi: 10.1002/(SICI)1521-4036(200001)42:1<71::AID-BIMJ71>3.0.CO;2-H. |
[1] |
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106 |
[2] |
Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003 |
[3] |
Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021001 |
[4] |
Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems & Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067 |
[5] |
Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345 |
[6] |
Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020346 |
[7] |
Jie Shen, Nan Zheng. Efficient and accurate sav schemes for the generalized Zakharov systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 645-666. doi: 10.3934/dcdsb.2020262 |
[8] |
Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016 |
[9] |
Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266 |
[10] |
Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076 |
[11] |
Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020171 |
[12] |
Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286 |
[13] |
Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021002 |
[14] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[15] |
Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363 |
[16] |
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020445 |
[17] |
Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345 |
[18] |
Yen-Luan Chen, Chin-Chih Chang, Zhe George Zhang, Xiaofeng Chen. Optimal preventive "maintenance-first or -last" policies with generalized imperfect maintenance models. Journal of Industrial & Management Optimization, 2021, 17 (1) : 501-516. doi: 10.3934/jimo.2020149 |
[19] |
Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A SOCP relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 151-168. doi: 10.3934/jimo.2019104 |
[20] |
Junchao Zhou, Yunge Xu, Lisha Wang, Nian Li. Nearly optimal codebooks from generalized Boolean bent functions over $ \mathbb{Z}_{4} $. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020121 |
2019 Impact Factor: 1.366
Tools
Article outline
[Back to Top]