# American Institute of Mathematical Sciences

doi: 10.3934/jimo.2020169

## On the convexity for the range set of two quadratic functions

 1 Institute of Natural Science Education, Vinh University, Vinh, Nghe An, Vietnam 2 Department of Mathematics, National Cheng Kung University, Tainan, Taiwan

* Corresponding author: Ruey-Lin Sheu

In memory of Professor Hang-Chin Lai for his life contribution in Mathematics and Optimization

Received  July 2020 Revised  September 2020 Published  November 2020

Fund Project: Huu-Quang, Nguyen's research work was supported by Taiwan MOST 108-2811-M-006-537 and Ruey-Lin Sheu's research work was sponsored by Taiwan MOST 107-2115-M-006-011-MY2

Given $n\times n$ symmetric matrices $A$ and $B,$ Dines in 1941 proved that the joint range set $\{(x^TAx, x^TBx)|\; x\in\mathbb{R}^n\}$ is always convex. Our paper is concerned with non-homogeneous extension of the Dines theorem for the range set $\mathbf{R}(f, g) = \{\left(f(x), g(x)\right)|\; x \in \mathbb{R}^n \},$ $f(x) = x^T A x + 2a^T x + a_0$ and $g(x) = x^T B x + 2b^T x + b_0.$ We show that $\mathbf{R}(f, g)$ is convex if, and only if, any pair of level sets, $\{x\in\mathbb{R}^n|f(x) = \alpha\}$ and $\{x\in\mathbb{R}^n|g(x) = \beta\}$, do not separate each other. With the novel geometric concept about separation, we provide a polynomial-time procedure to practically check whether a given $\mathbf{R}(f, g)$ is convex or not.

Citation: Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020169
##### References:

show all references

##### References:
The graph corresponds to Example 1
Let $f(x, y, z) = x^2+y^2$ and $g(x, y, z) = -x^2+y^2+z$
For remark (c) and remark (e). Let $f(x, y) = -x^2 + 4 y^2$ and $g(x, y) = 2x-y$. The level set $\{g = 0\}$ separates $\{f<0\},$ while $\{g = 0\}$ does not separate $\{f = 0\}$
For remark (d). Let $f(x, y) = -x^2 + 4 y^2 - 1$ and $g(x, y) = x-5y$. The level set $\{g = 0\}$ separates $\{f = 0\}$ while $\{g = 0\}$ does not separate $\{f<0\}.$
For remark (f) in which $f(x, y) = -x^2 + 4 y^2 + 1$ and $g(x, y) = -(x-1)^2+4y^2+1$
Graph for Proof of Theorem 3.1
For Example 2. Let $f(x, y) = -\frac{\sqrt{3}}{2} x^2 + \frac{\sqrt{3}}{2} y^2 + x - \frac{1}{2} y$ and $g(x, y) = \frac{1}{2} x^2 - \frac{1}{2} y^2 + \sqrt{3} x - \frac{\sqrt{3}}{2} y$
The joint numerical range $\mathbf{R}(f, g)$ in Example 3
Chronological list of notable results related to problem (P)
 1941 (Dines [3]) (Dines Theorem) $\left\{ \left. \left( x^T A x, x^T B x \right) \; \right|\; x \in \mathbb{R}^n \right\}$ is convex. Moreover, if $x^T A x$ and $x^T B x$ has no common zero except for $x=0$, then $\left\{ \left. \left( x^T A x, x^T B x \right) \; \right|\; x \in \mathbb{R}^n \right\}$ is either $\mathbb{R}^2$ or an angular sector of angle less than $\pi$. 1961 (Brickmen [1]) $\mathbf{K}_{A, B} = \left\{ \left. \left( x^T A x, x^T B x \right) \; \right|\; x \in \mathbb{R}^n\; , \; \|x\|=1 \right\}$ is convex if $n \geq 3$. 1995 (Ramana & Goldman [11]) Unpublished $\mathbf{R}(f, g) = \left\{ \left. \left( f(x), g(x) \right) \; \right|\; x \in \mathbb{R}^n \right\}$ is convex if and only if $\mathbf{R}(f, g) = \mathbf{R}(f_H, g_H) + \mathbf{R}(f, g)$, where $f_H(x) = x^T A x$ and $g_H(x) = x^T B x$. $\mathbf{R}(f, g) = \left\{ \left. \left( f(x), g(x) \right) \; \right|\; x \in \mathbb{R}^n \right\}$is convex if $n \geq 2$ and $\exists\; \alpha, \beta \in \mathbb{R}$ such that $\alpha A + \beta B \succ 0$. 1998 (Polyak [10]) $\left\{ \left. \left( x^T A x, x^T B x, x^T C x \right) \; \right|\; x \in \mathbb{R}^n \right\}$ is convex if $n \geq 3$ and $\exists\; \alpha, \beta, \gamma \in \mathbb{R}$ such that $\alpha A + \beta B + \gamma C \succ 0$. $\left\{ \left. \left( x^T A_1 x, \cdots, x^T A_m x \right) \; \right|\; x \in \mathbb{R}^n \right\}$ is convex if $A_1, \cdots, A_m$ commute. 2016 (Bazán & Opazo [5]) $\mathbf{R}(f, g) = \left\{ \left. \left( f(x), g(x) \right) \; \right|\; x \in \mathbb{R}^n \right\}$ is convex if and only if $\exists\; d=(d_1, d_2) \in \mathbb{R}^2$, $d \neq 0$, such that the following four conditions hold: $\bf{(C1):}$ $F_L \left( \mathcal{N}(A) \cap \mathcal{N}(B) \right) = \{0\}$ $\bf{(C2):}$ $d_2 A = d_1 B$ $\bf{(C3):}$ $-d \in \mathbf{R}(f_H, g_H)$ $\bf{(C4):}$ $F_H(u) = -d \implies \langle F_L(u), d_{\perp}\rangle \neq 0$ where $\mathcal{N}(A)$ and $\mathcal{N}(B)$ denote the null space of $A$ and $B$ respectively, $F_H(x) = \left( f_H(x), g_H(x) \right) = \left( x^T A x , x^T B x \right)$, $F_L(x) = \left( a^T x , b^T x \right)$, and $d_{\perp} = (-d_2, d_1)$.
 1941 (Dines [3]) (Dines Theorem) $\left\{ \left. \left( x^T A x, x^T B x \right) \; \right|\; x \in \mathbb{R}^n \right\}$ is convex. Moreover, if $x^T A x$ and $x^T B x$ has no common zero except for $x=0$, then $\left\{ \left. \left( x^T A x, x^T B x \right) \; \right|\; x \in \mathbb{R}^n \right\}$ is either $\mathbb{R}^2$ or an angular sector of angle less than $\pi$. 1961 (Brickmen [1]) $\mathbf{K}_{A, B} = \left\{ \left. \left( x^T A x, x^T B x \right) \; \right|\; x \in \mathbb{R}^n\; , \; \|x\|=1 \right\}$ is convex if $n \geq 3$. 1995 (Ramana & Goldman [11]) Unpublished $\mathbf{R}(f, g) = \left\{ \left. \left( f(x), g(x) \right) \; \right|\; x \in \mathbb{R}^n \right\}$ is convex if and only if $\mathbf{R}(f, g) = \mathbf{R}(f_H, g_H) + \mathbf{R}(f, g)$, where $f_H(x) = x^T A x$ and $g_H(x) = x^T B x$. $\mathbf{R}(f, g) = \left\{ \left. \left( f(x), g(x) \right) \; \right|\; x \in \mathbb{R}^n \right\}$is convex if $n \geq 2$ and $\exists\; \alpha, \beta \in \mathbb{R}$ such that $\alpha A + \beta B \succ 0$. 1998 (Polyak [10]) $\left\{ \left. \left( x^T A x, x^T B x, x^T C x \right) \; \right|\; x \in \mathbb{R}^n \right\}$ is convex if $n \geq 3$ and $\exists\; \alpha, \beta, \gamma \in \mathbb{R}$ such that $\alpha A + \beta B + \gamma C \succ 0$. $\left\{ \left. \left( x^T A_1 x, \cdots, x^T A_m x \right) \; \right|\; x \in \mathbb{R}^n \right\}$ is convex if $A_1, \cdots, A_m$ commute. 2016 (Bazán & Opazo [5]) $\mathbf{R}(f, g) = \left\{ \left. \left( f(x), g(x) \right) \; \right|\; x \in \mathbb{R}^n \right\}$ is convex if and only if $\exists\; d=(d_1, d_2) \in \mathbb{R}^2$, $d \neq 0$, such that the following four conditions hold: $\bf{(C1):}$ $F_L \left( \mathcal{N}(A) \cap \mathcal{N}(B) \right) = \{0\}$ $\bf{(C2):}$ $d_2 A = d_1 B$ $\bf{(C3):}$ $-d \in \mathbf{R}(f_H, g_H)$ $\bf{(C4):}$ $F_H(u) = -d \implies \langle F_L(u), d_{\perp}\rangle \neq 0$ where $\mathcal{N}(A)$ and $\mathcal{N}(B)$ denote the null space of $A$ and $B$ respectively, $F_H(x) = \left( f_H(x), g_H(x) \right) = \left( x^T A x , x^T B x \right)$, $F_L(x) = \left( a^T x , b^T x \right)$, and $d_{\perp} = (-d_2, d_1)$.
 [1] Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076 [2] Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374 [3] Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020364 [4] Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial & Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009 [5] Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015 [6] Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005 [7] Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $p$-Laplacian. Communications on Pure & Applied Analysis, 2021, 20 (2) : 835-865. doi: 10.3934/cpaa.2020293 [8] Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100 [9] Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070 [10] Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025 [11] Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032 [12] Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026 [13] Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334 [14] Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021018 [15] Vadim Azhmyakov, Juan P. Fernández-Gutiérrez, Erik I. Verriest, Stefan W. Pickl. A separation based optimization approach to Dynamic Maximal Covering Location Problems with switched structure. Journal of Industrial & Management Optimization, 2021, 17 (2) : 669-686. doi: 10.3934/jimo.2019128 [16] Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381 [17] Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347 [18] Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390 [19] Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $\Phi$-irregular and $\Phi$-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317 [20] Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

2019 Impact Factor: 1.366

## Tools

Article outline

Figures and Tables