• Previous Article
    Dynamic network flow location models and algorithms for quickest evacuation planning
  • JIMO Home
  • This Issue
  • Next Article
    Ambulance routing in disaster response considering variable patient condition: NSGA-II and MOPSO algorithms
doi: 10.3934/jimo.2020170

Cooperation in traffic network problems via evolutionary split variational inequalities

1. 

Department of Mathematics, Technion - Israel Institute of Technology, Haifa, 3200003, Israel

2. 

Department of Mathematics, ORT Braude College, Karmiel, 2161002, Israel

3. 

The Center for Mathematics and Scientific Computation, University of Haifa, Mt. Carmel, Haifa, 3498838, Israel

4. 

Department of Mathematics, Zhejiang Normal University, Zhejiang, China

* Corresponding author: Xiaolong Qin

Received  August 2020 Revised  September 2020 Published  November 2020

In this paper, we construct an evolutionary (time-dependent) split variational inequality problem and show how to reformulate equilibria of the dynamic traffic network models of two cities as such problem. We also establish existence result for the proposed model. Primary numerical results of equilibria illustrate the validity and applicability of our results.

Citation: Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020170
References:
[1]

Q. H. Ansari and M. Rezaei, Existence results for Stampacchia and Minty type vector variational inequalities, Optimization, 59 (2010), 1053-1065.  doi: 10.1080/02331930903395725.  Google Scholar

[2]

D. Aussel and J. Cotrina, Existence of time-dependent traffic equilibria, Appl. Anal., 91 (2012), 1775-1791.  doi: 10.1080/00036811.2012.692364.  Google Scholar

[3]

D. AusselR. Gupta and A. Mehra, Evolutionary variational inequality formulation of the generalized Nash equilibrium problem, J. Optim. Theory Appl., 169 (2016), 74-90.  doi: 10.1007/s10957-015-0859-9.  Google Scholar

[4]

A. Barbagallo, Degenerate time-dependent variational inequalities with applications to traffic equilibrium problems, Comput. Methods Appl. Math., 6 (2006), 117-133.  doi: 10.2478/cmam-2006-0006.  Google Scholar

[5]

A. Barbagallo and M.-G. Cojocaru, Dynamic equilibrium formulation of the oligopolistic market problem, Math. Comput. Modelling, 49 (2009), 966-976.  doi: 10.1016/j.mcm.2008.02.003.  Google Scholar

[6]

A. BarbagalloP. Daniele and A. Maugeri, Variational formulation for a general dynamic financial equilibrium problem: Balance law and liability formula, Nonlinear Anal., 75 (2012), 1104-1123.  doi: 10.1016/j.na.2010.10.013.  Google Scholar

[7]

H. Brezis, Inéquations d'évolution abstraites, C. R. Acad. Sci. Paris Sér. A-B, 264 (1967), A732-A735.  Google Scholar

[8]

C. ByrneY. CensorA. Gibali and S. Reich, The split common null point problem, J. Nonlinear Convex Anal., 13 (2012), 759-775.   Google Scholar

[9]

L.-C. Ceng and S. Huang, Existence theorems for generalized vector variational inequalities with a variable ordering relation, J. Global Optim., 46 (2010), 521-535.  doi: 10.1007/s10898-009-9436-9.  Google Scholar

[10]

Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (1994), 221-239.  doi: 10.1007/BF02142692.  Google Scholar

[11]

Y. CensorT. ElfvingN. Kopf and T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Problems, 21 (2005), 2071-2084.  doi: 10.1088/0266-5611/21/6/017.  Google Scholar

[12]

Y. CensorA. Gibali and S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms, 59 (2012), 301-323.  doi: 10.1007/s11075-011-9490-5.  Google Scholar

[13]

C. Ciarcià and P. Daniele, New existence theorems for quasi-variational inequalities and applications to financial models, European J. Oper. Res., 251 (2016), 288-299.  doi: 10.1016/j.ejor.2015.11.013.  Google Scholar

[14]

M. Chen and C. Huang, A power penalty method for a class of linearly constrained variational inequality, J. Ind. Manag. Optim., 14 (2018), 1381-1396.  doi: 10.3934/jimo.2018012.  Google Scholar

[15]

M. G. CojocaruP. Daniele and A. Nagurney, Projected dynamical systems and evolutionary variational inequalities via Hilbert spaces with applications, J. Optim. Theory Appl., 127 (2005), 549-563.  doi: 10.1007/s10957-005-7502-0.  Google Scholar

[16]

M.-G. Cojocaru and L. B. Jonker, Existence of solutions to projected differential equations in Hilbert spaces, Proc. Amer. Math. Soc., 132 (2004), 183-193.  doi: 10.1090/S0002-9939-03-07015-1.  Google Scholar

[17]

S. Dafermos, Traffic equilibrium and variational inequalities, Transportation Sci., 14 (1980), 42-54.  doi: 10.1287/trsc.14.1.42.  Google Scholar

[18]

P. Daniele, Time-dependent spatial price equilibrium problem: Existence and stability results for the quantity formulation model, J. Global Optim., 28 (2004), 283-295.  doi: 10.1023/B:JOGO.0000026449.29735.3c.  Google Scholar

[19]

P. DanieleA. Maugeri and W. Oettli, Time-dependent traffic equilibria, J. Optim. Theory Appl., 103 (1999), 543-555.  doi: 10.1023/A:1021779823196.  Google Scholar

[20]

P. Dupuis and H. Ishii, On Lipschitz continuity of the solution mapping to the Skorokhod problem, with applications, Stochastics Stochastics Rep., 35 (1991), 31-62.  doi: 10.1080/17442509108833688.  Google Scholar

[21]

P. Dupuis and A. Nagurney, Dynamical systems and variational inequalities, Ann. Oper. Res., 44 (1993), 9-42.  doi: 10.1007/BF02073589.  Google Scholar

[22]

K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann., 266 (1984), 519-537.  doi: 10.1007/BF01458545.  Google Scholar

[23]

G. Fichera, Problemi elastostatici con vincoli unilaterali: Il problema di Signorini con ambique condizioni al contorno, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8), 7 (1963/64), 91-140.   Google Scholar

[24]

G. Fichera, Sul problema elastostatico di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 34 (1963), 138-142.   Google Scholar

[25]

S. GiuffrèG. Idone and S. Pia, Some classes of projected dynamical systems in Banach spaces and variational inequalities, J. Global Optim., 40 (2008), 119-128.  doi: 10.1007/s10898-007-9173-x.  Google Scholar

[26]

S. Lawphongpanich and D. W. Hearn, Simplical decomposition of the asymmetric traffic assignment problem, Transportation Res. Part B, 18 (1984), 123-133.  doi: 10.1016/0191-2615(84)90026-2.  Google Scholar

[27]

J.-L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math., 20 (1967), 493-519.  doi: 10.1002/cpa.3160200302.  Google Scholar

[28]

S.-Y. Matsushita and L. Xu, On finite convergence of iterative methods for variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 161 (2014), 701-715.  doi: 10.1007/s10957-013-0460-z.  Google Scholar

[29]

A. Moudafi, The split common fixed-point problem for demicontractive mappings, Inverse Problems, 26 (2010), 6pp. doi: 10.1088/0266-5611/26/5/055007.  Google Scholar

[30]

A. NagurneyD. Parkes and P. Daniele, The Internet, evolutionary variational inequalities, and the time-dependent Braess paradox, Comput. Manag. Sci., 4 (2007), 355-375.  doi: 10.1007/s10287-006-0027-7.  Google Scholar

[31]

B. PanicucciM. Pappalardo and M. Passacantando, A path-based double projection method for solving the asymmetric traffic network equilibrium problem, Optim. Lett., 1 (2007), 171-185.  doi: 10.1007/s11590-006-0002-9.  Google Scholar

[32]

F. Raciti, Equilibrium conditions and vector variational inequalities: A complex relation, J. Global Optim., 40 (2008), 353-360.  doi: 10.1007/s10898-007-9202-9.  Google Scholar

[33]

L. Scrimali and C. Mirabella, Cooperation in pollution control problems via evolutionary variational inequalities, J. Global Optim., 70 (2018), 455-476.  doi: 10.1007/s10898-017-0580-3.  Google Scholar

[34]

Y. Shehu and O. Iyiola, On a modified extragradient method for variational inequality problem with application to industrial electricity production, J. Ind. Manag. Optim., 15 (2019), 319-342.  doi: 10.3934/jimo.2018045.  Google Scholar

[35]

M. J. Smith, The existence, uniqueness and stability of traffic equilibria, Transportation Res., 13 (1979), 295-304.  doi: 10.1016/0191-2615(79)90022-5.  Google Scholar

[36]

G. Stampacchia, Formes bilinéaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris, 258 (1964), 4413-4416.   Google Scholar

[37]

X. K. Sun and S. J. Li, Duality and gap function for generalized multivalued $\epsilon$-vector variational inequality, Appl. Anal., 92 (2013), 482-492.  doi: 10.1080/00036811.2011.628940.  Google Scholar

[38]

J. Yang, Dynamic power price problem: An inverse variational inequality approach, J. Ind. Manag. Optim., 4 (2008), 673-684.  doi: 10.3934/jimo.2008.4.673.  Google Scholar

show all references

References:
[1]

Q. H. Ansari and M. Rezaei, Existence results for Stampacchia and Minty type vector variational inequalities, Optimization, 59 (2010), 1053-1065.  doi: 10.1080/02331930903395725.  Google Scholar

[2]

D. Aussel and J. Cotrina, Existence of time-dependent traffic equilibria, Appl. Anal., 91 (2012), 1775-1791.  doi: 10.1080/00036811.2012.692364.  Google Scholar

[3]

D. AusselR. Gupta and A. Mehra, Evolutionary variational inequality formulation of the generalized Nash equilibrium problem, J. Optim. Theory Appl., 169 (2016), 74-90.  doi: 10.1007/s10957-015-0859-9.  Google Scholar

[4]

A. Barbagallo, Degenerate time-dependent variational inequalities with applications to traffic equilibrium problems, Comput. Methods Appl. Math., 6 (2006), 117-133.  doi: 10.2478/cmam-2006-0006.  Google Scholar

[5]

A. Barbagallo and M.-G. Cojocaru, Dynamic equilibrium formulation of the oligopolistic market problem, Math. Comput. Modelling, 49 (2009), 966-976.  doi: 10.1016/j.mcm.2008.02.003.  Google Scholar

[6]

A. BarbagalloP. Daniele and A. Maugeri, Variational formulation for a general dynamic financial equilibrium problem: Balance law and liability formula, Nonlinear Anal., 75 (2012), 1104-1123.  doi: 10.1016/j.na.2010.10.013.  Google Scholar

[7]

H. Brezis, Inéquations d'évolution abstraites, C. R. Acad. Sci. Paris Sér. A-B, 264 (1967), A732-A735.  Google Scholar

[8]

C. ByrneY. CensorA. Gibali and S. Reich, The split common null point problem, J. Nonlinear Convex Anal., 13 (2012), 759-775.   Google Scholar

[9]

L.-C. Ceng and S. Huang, Existence theorems for generalized vector variational inequalities with a variable ordering relation, J. Global Optim., 46 (2010), 521-535.  doi: 10.1007/s10898-009-9436-9.  Google Scholar

[10]

Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (1994), 221-239.  doi: 10.1007/BF02142692.  Google Scholar

[11]

Y. CensorT. ElfvingN. Kopf and T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Problems, 21 (2005), 2071-2084.  doi: 10.1088/0266-5611/21/6/017.  Google Scholar

[12]

Y. CensorA. Gibali and S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms, 59 (2012), 301-323.  doi: 10.1007/s11075-011-9490-5.  Google Scholar

[13]

C. Ciarcià and P. Daniele, New existence theorems for quasi-variational inequalities and applications to financial models, European J. Oper. Res., 251 (2016), 288-299.  doi: 10.1016/j.ejor.2015.11.013.  Google Scholar

[14]

M. Chen and C. Huang, A power penalty method for a class of linearly constrained variational inequality, J. Ind. Manag. Optim., 14 (2018), 1381-1396.  doi: 10.3934/jimo.2018012.  Google Scholar

[15]

M. G. CojocaruP. Daniele and A. Nagurney, Projected dynamical systems and evolutionary variational inequalities via Hilbert spaces with applications, J. Optim. Theory Appl., 127 (2005), 549-563.  doi: 10.1007/s10957-005-7502-0.  Google Scholar

[16]

M.-G. Cojocaru and L. B. Jonker, Existence of solutions to projected differential equations in Hilbert spaces, Proc. Amer. Math. Soc., 132 (2004), 183-193.  doi: 10.1090/S0002-9939-03-07015-1.  Google Scholar

[17]

S. Dafermos, Traffic equilibrium and variational inequalities, Transportation Sci., 14 (1980), 42-54.  doi: 10.1287/trsc.14.1.42.  Google Scholar

[18]

P. Daniele, Time-dependent spatial price equilibrium problem: Existence and stability results for the quantity formulation model, J. Global Optim., 28 (2004), 283-295.  doi: 10.1023/B:JOGO.0000026449.29735.3c.  Google Scholar

[19]

P. DanieleA. Maugeri and W. Oettli, Time-dependent traffic equilibria, J. Optim. Theory Appl., 103 (1999), 543-555.  doi: 10.1023/A:1021779823196.  Google Scholar

[20]

P. Dupuis and H. Ishii, On Lipschitz continuity of the solution mapping to the Skorokhod problem, with applications, Stochastics Stochastics Rep., 35 (1991), 31-62.  doi: 10.1080/17442509108833688.  Google Scholar

[21]

P. Dupuis and A. Nagurney, Dynamical systems and variational inequalities, Ann. Oper. Res., 44 (1993), 9-42.  doi: 10.1007/BF02073589.  Google Scholar

[22]

K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann., 266 (1984), 519-537.  doi: 10.1007/BF01458545.  Google Scholar

[23]

G. Fichera, Problemi elastostatici con vincoli unilaterali: Il problema di Signorini con ambique condizioni al contorno, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8), 7 (1963/64), 91-140.   Google Scholar

[24]

G. Fichera, Sul problema elastostatico di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 34 (1963), 138-142.   Google Scholar

[25]

S. GiuffrèG. Idone and S. Pia, Some classes of projected dynamical systems in Banach spaces and variational inequalities, J. Global Optim., 40 (2008), 119-128.  doi: 10.1007/s10898-007-9173-x.  Google Scholar

[26]

S. Lawphongpanich and D. W. Hearn, Simplical decomposition of the asymmetric traffic assignment problem, Transportation Res. Part B, 18 (1984), 123-133.  doi: 10.1016/0191-2615(84)90026-2.  Google Scholar

[27]

J.-L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math., 20 (1967), 493-519.  doi: 10.1002/cpa.3160200302.  Google Scholar

[28]

S.-Y. Matsushita and L. Xu, On finite convergence of iterative methods for variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 161 (2014), 701-715.  doi: 10.1007/s10957-013-0460-z.  Google Scholar

[29]

A. Moudafi, The split common fixed-point problem for demicontractive mappings, Inverse Problems, 26 (2010), 6pp. doi: 10.1088/0266-5611/26/5/055007.  Google Scholar

[30]

A. NagurneyD. Parkes and P. Daniele, The Internet, evolutionary variational inequalities, and the time-dependent Braess paradox, Comput. Manag. Sci., 4 (2007), 355-375.  doi: 10.1007/s10287-006-0027-7.  Google Scholar

[31]

B. PanicucciM. Pappalardo and M. Passacantando, A path-based double projection method for solving the asymmetric traffic network equilibrium problem, Optim. Lett., 1 (2007), 171-185.  doi: 10.1007/s11590-006-0002-9.  Google Scholar

[32]

F. Raciti, Equilibrium conditions and vector variational inequalities: A complex relation, J. Global Optim., 40 (2008), 353-360.  doi: 10.1007/s10898-007-9202-9.  Google Scholar

[33]

L. Scrimali and C. Mirabella, Cooperation in pollution control problems via evolutionary variational inequalities, J. Global Optim., 70 (2018), 455-476.  doi: 10.1007/s10898-017-0580-3.  Google Scholar

[34]

Y. Shehu and O. Iyiola, On a modified extragradient method for variational inequality problem with application to industrial electricity production, J. Ind. Manag. Optim., 15 (2019), 319-342.  doi: 10.3934/jimo.2018045.  Google Scholar

[35]

M. J. Smith, The existence, uniqueness and stability of traffic equilibria, Transportation Res., 13 (1979), 295-304.  doi: 10.1016/0191-2615(79)90022-5.  Google Scholar

[36]

G. Stampacchia, Formes bilinéaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris, 258 (1964), 4413-4416.   Google Scholar

[37]

X. K. Sun and S. J. Li, Duality and gap function for generalized multivalued $\epsilon$-vector variational inequality, Appl. Anal., 92 (2013), 482-492.  doi: 10.1080/00036811.2011.628940.  Google Scholar

[38]

J. Yang, Dynamic power price problem: An inverse variational inequality approach, J. Ind. Manag. Optim., 4 (2008), 673-684.  doi: 10.3934/jimo.2008.4.673.  Google Scholar

Figure 1.  Transportation network patterns of the City $ X\; \text{and}\; Y $
Figure 2.  Traffic network pattern of two cities $ X $ and $ Y $
Figure 3.  Traffic network pattern of City $ Y $
Table 1.  Numerical Results
$ t_{i} $ $ x_{1}^{*}(t_{i}) $ $ x_{2}^{*}(t_{i}) $ $ x_{3}^{*}(t_{i}) $ $ x_{4}^{*}(t_{i}) $
$ 0 $ 1 1 1.5 1.5
$ \frac{1}{8} $ 1.125 1.125 1.6875 1.6875
$ \frac{1}{4} $ 1.25 1.25 1.875 1.875
$ \frac{3}{8} $ 1.375 1.375 2.0625 2.0625
$ \frac{1}{2} $ 1.5 1.5 2.25 2.25
$ \frac{5}{8} $ 1.625 1.625 2.4375 2.4375
$ \frac{3}{4} $ 1.75 1.75 2.625 2.625
$ \frac{7}{8} $ 1.875 1.875 2.8125 2.8125
$ 1 $ 2 2 3 3
$ \frac{9}{8} $ 2.125 2.125 3.1875 3.1875
$ \frac{5}{4} $ 2.25 2.25 3.375 3.375
$ \frac{11}{8} $ 2.375 2.375 3.5625 3.5625
$ \frac{3}{2} $ 2.5 2.5 3.75 3.75
$ \frac{13}{8} $ 2.625 2.625 3.9375 3.9375
$ \frac{7}{4} $ 2.75 2.75 4.125 4.125
$ \frac{15}{8} $ 2.875 2.875 4.3125 4.3125
$ 2 $ 3 3 4.5 4.5
$ t_{i} $ $ x_{1}^{*}(t_{i}) $ $ x_{2}^{*}(t_{i}) $ $ x_{3}^{*}(t_{i}) $ $ x_{4}^{*}(t_{i}) $
$ 0 $ 1 1 1.5 1.5
$ \frac{1}{8} $ 1.125 1.125 1.6875 1.6875
$ \frac{1}{4} $ 1.25 1.25 1.875 1.875
$ \frac{3}{8} $ 1.375 1.375 2.0625 2.0625
$ \frac{1}{2} $ 1.5 1.5 2.25 2.25
$ \frac{5}{8} $ 1.625 1.625 2.4375 2.4375
$ \frac{3}{4} $ 1.75 1.75 2.625 2.625
$ \frac{7}{8} $ 1.875 1.875 2.8125 2.8125
$ 1 $ 2 2 3 3
$ \frac{9}{8} $ 2.125 2.125 3.1875 3.1875
$ \frac{5}{4} $ 2.25 2.25 3.375 3.375
$ \frac{11}{8} $ 2.375 2.375 3.5625 3.5625
$ \frac{3}{2} $ 2.5 2.5 3.75 3.75
$ \frac{13}{8} $ 2.625 2.625 3.9375 3.9375
$ \frac{7}{4} $ 2.75 2.75 4.125 4.125
$ \frac{15}{8} $ 2.875 2.875 4.3125 4.3125
$ 2 $ 3 3 4.5 4.5
Table 2.  Numerical Results
$ t_{i} $ $ y_{1}^{*}(t_{i}) $ $ y_{2}^{*}(t_{i}) $ $ y_{3}^{*}(t_{i}) $ $ y_{4}^{*}(t_{i}) $ $ y_{5}^{*}(t_{i}) $
$ 0 $ 2.5 2.5 2 2 2
$ \frac{1}{8} $ 2.8125 2.8125 2.25 2.25 2.25
$ \frac{1}{4} $ 3.125 3.125 2.5 2.5 2.5
$ \frac{3}{8} $ 3.4375 3.4375 2.75 2.75 2.75
$ \frac{1}{2} $ 3.75 3.75 3 3 3
$ \frac{5}{8} $ 4.0625 4.0625 3.25 3.25 3.25
$ \frac{3}{4} $ 4.375 4.375 3.5 3.5 3.5
$ \frac{7}{8} $ 4.6875 4.6875 3.75 3.75 3.75
$ 1 $ 5 5 4 4 4
$ \frac{9}{8} $ 5.3125 5.3125 4.25 4.25 4.25
$ \frac{5}{4} $ 5.625 5.625 4.5 4.5 4.5
$ \frac{11}{8} $ 5.9375 5.9375 4.75 4.75 4.75
$ \frac{3}{2} $ 6.25 6.25 5 5 5
$ \frac{13}{8} $ 6.5625 6.5625 5.25 5.25 5.25
$ \frac{7}{4} $ 6.875 6.875 5.5 5.5 5.5
$ \frac{15}{8} $ 7.1875 7.1875 5.75 5.75 5.75
$ 2 $ 7.5 7.5 6 6 6
$ t_{i} $ $ y_{1}^{*}(t_{i}) $ $ y_{2}^{*}(t_{i}) $ $ y_{3}^{*}(t_{i}) $ $ y_{4}^{*}(t_{i}) $ $ y_{5}^{*}(t_{i}) $
$ 0 $ 2.5 2.5 2 2 2
$ \frac{1}{8} $ 2.8125 2.8125 2.25 2.25 2.25
$ \frac{1}{4} $ 3.125 3.125 2.5 2.5 2.5
$ \frac{3}{8} $ 3.4375 3.4375 2.75 2.75 2.75
$ \frac{1}{2} $ 3.75 3.75 3 3 3
$ \frac{5}{8} $ 4.0625 4.0625 3.25 3.25 3.25
$ \frac{3}{4} $ 4.375 4.375 3.5 3.5 3.5
$ \frac{7}{8} $ 4.6875 4.6875 3.75 3.75 3.75
$ 1 $ 5 5 4 4 4
$ \frac{9}{8} $ 5.3125 5.3125 4.25 4.25 4.25
$ \frac{5}{4} $ 5.625 5.625 4.5 4.5 4.5
$ \frac{11}{8} $ 5.9375 5.9375 4.75 4.75 4.75
$ \frac{3}{2} $ 6.25 6.25 5 5 5
$ \frac{13}{8} $ 6.5625 6.5625 5.25 5.25 5.25
$ \frac{7}{4} $ 6.875 6.875 5.5 5.5 5.5
$ \frac{15}{8} $ 7.1875 7.1875 5.75 5.75 5.75
$ 2 $ 7.5 7.5 6 6 6
[1]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[2]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[3]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[4]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[5]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[6]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[7]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[8]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[9]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[10]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[11]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[12]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[13]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[14]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[15]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[16]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[17]

Andrea Tosin, Mattia Zanella. Uncertainty damping in kinetic traffic models by driver-assist controls. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021018

[18]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[19]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[20]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (37)
  • HTML views (98)
  • Cited by (0)

Other articles
by authors

[Back to Top]