
-
Previous Article
First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits
- JIMO Home
- This Issue
-
Next Article
Continuity, differentiability and semismoothness of generalized tensor functions
Perturbation of Image and conjugate duality for vector optimization
1. | College of Mathematics and Information, China West Normal University, Nanchong 637009, Sichuan, China |
2. | College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China |
This paper aims at employing the image space approach to investigate the conjugate duality theory for general constrained vector optimization problems. We introduce the concepts of conjugate map and subdifferential by using two types of maximums. We also construct the conjugate duality problems via a perturbation method. Moreover, the separation condition is proposed by means of vector weak separation functions. Then, it is proved to be a new sufficient condition, which ensures the strong duality theorem. This separation condition is different from the classical regular conditions in the literature. Simultaneously, the application to a nonconvex multi-objective optimization problem is shown to verify our main results.
References:
[1] |
R. I. Bot, Conjugate Duality in Convex Optimization, Lecture Notes in Economics and Mathematical Systems, 637. Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-04900-2. |
[2] |
R. I. Bot, S. M. Grad and G. Wanka,
New constraint qualification and conjugate duality for composed convex optimization problems, J. Optim. Theory Appl., 135 (2007), 241-255.
doi: 10.1007/s10957-007-9247-4. |
[3] |
G. Castellani and F. Giannessi, Decomposition of mathematical programs by means of theorems of alternative for linear and nonlinear systems, In: Proc. Ninth Internat. Math. Programming Sympos., Budapest. Survey of Mathematical Programming, North-Holland, Amsterdam, 2 (1979), 423-439. |
[4] |
J. W. Chen, S. J. Li, Z. P. Wang and J. C. Yao,
Vector variational-like inequalities with constraints: Separation and alternative, J. Optim. Theory Appl., 166 (2015), 460-479.
doi: 10.1007/s10957-015-0736-6. |
[5] |
M. Chinaie and J. Zafarani,
Image space analysis and scalarization of multivalued optimization, J. Optim. Theory Appl., 142 (2009), 451-467.
doi: 10.1007/s10957-009-9531-6. |
[6] |
P. H. Dien, G. Mastroeni, M. Pappalardo and P. H. Quang,
Regularity condition for constrained extreme problems via image space, J. Optim. Theory Appl., 80 (1994), 19-37.
doi: 10.1007/BF02196591. |
[7] |
F. Giannessi,
Theorems of the alternative and optimality conditions, J. Optim. Theory Appl., 42 (1984), 331-365.
doi: 10.1007/BF00935321. |
[8] |
F. Giannessi,
On the theory of Lagrangian duality, Optim. Lett., 1 (2007), 9-20.
doi: 10.1007/s11590-006-0013-6. |
[9] |
F. Giannessi, Constrained Optimization and Image Space Analysis, Separation of Sets and Optimality Conditions, vol. 1. Springer, Berlin, 2005. |
[10] |
C. Gutiérrez, B. Jiménez and V. Novo,
On approximate solutions in vector optimization problems via scalarization, Comput. Optim. Appl., 35 (2006), 305-324.
doi: 10.1007/s10589-006-8718-0. |
[11] |
F. Giannessi and G. Mastroeni,
Separation of sets and Wolfe duality, J. Glob. Optim., 42 (2008), 401-412.
doi: 10.1007/s10898-008-9301-2. |
[12] |
F. Giannessi, G. Mastroeni and L. Pellegrini, On the theory of vector optimization and variational inequalities, Image space analysis and seperation, In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, Kluwer Academic, Dordrech, (2000), 153-215. Google Scholar |
[13] |
J. Li, S. Q. Feng and Z. Zhang,
A unified approach for constrained extremum problems: Image space analysis, J. Optim. Theory Appl., 159 (2013), 69-92.
doi: 10.1007/s10957-013-0276-x. |
[14] |
S. J. Li, Y. D. Xu and S. K. Zhu,
Nonlinear separation approach to constrained extremum problems, J. Optim. Theory Appl., 154 (2012), 842-856.
doi: 10.1007/s10957-012-0027-4. |
[15] |
G. Mastroeni, Optimality conditions and image space analysis for vector optimization problems, In: Ansari, Q.H., Yao, J.-C. (eds.) Recent Developments in Vector Optimization, Vector Optimization, Springer, Dordrecht, 1 (2012), 169-220.
doi: 10.1007/978-3-642-21114-0_6. |
[16] |
G. Mastroeni,
On the image space analysis for vector quasi-equilibrium problems with a variable ordering relation, J. Glob. Optim., 53 (2012), 203-214.
doi: 10.1007/s10898-011-9674-5. |
[17] |
G. Mastroeni,
Some applications of the image space analysis to the duality theory for constrained extremum problems, J. Glob. Optim., 46 (2010), 603-614.
doi: 10.1007/s10898-009-9445-8. |
[18] |
G. Mastroeni,
Nonlinear separation in the image space with applications to penalty methods, Appl. Anal., 91 (2012), 1901-1914.
doi: 10.1080/00036811.2011.614603. |
[19] |
G. Mastroeni, M. Pappalardo and N. D. Yen,
Image of a parametric optimization problem and continuity of the perturbation function, J. Optim. Theory Appl., 81 (1994), 193-202.
doi: 10.1007/BF02190319. |
[20] |
A. Moldovan and L. Pellegrini,
On regularity for constrained extremum problems. Part 1: Suffficient optimality conditions, J. Optim. Theory Appl., 142 (2009), 147-163.
doi: 10.1007/s10957-009-9518-3. |
[21] |
A. Moldovan and L. Pellegrini,
On regularity for constrained extremum problems. Part 2: Necessary optimality conditions, J. Optim. Theory Appl., 142 (2009), 165-183.
doi: 10.1007/s10957-009-9521-8. |
[22] |
M. Pappalardo,
Image space approach to penalty methods, J. Optim. Theory Appl., 64 (1990), 141-152.
doi: 10.1007/BF00940028. |
[23] |
T. Tanino,
Conjugate duality in vector optimization, J. Math. Anal. Appl., 167 (1992), 84-97.
doi: 10.1016/0022-247X(92)90237-8. |
[24] |
F. Tardella,
On the image of a constrained extremum problem and some applications to existence of a minimum, J. Optim. Theory Appl., 60 (1989), 93-104.
doi: 10.1007/BF00938802. |
[25] |
Y. D. Xu and S. J. Li,
Gap functions and error bounds for weak vector variational inequalities, Optimization, 63 (2014), 1339-1352.
doi: 10.1080/02331934.2012.721115. |
[26] |
Y. D. Xu and S. J. Li,
Nonlinear separation functions and constrained extremum problems, Optim. Lett., 8 (2014), 1149-1160.
doi: 10.1007/s11590-013-0644-3. |
[27] |
S. K. Zhu and S. J. Li,
United duality theory for constrained extremum problems. Part I: Image space analysis, J. Optim. Theory Appl., 161 (2014), 738-762.
doi: 10.1007/s10957-013-0468-4. |
[28] |
S. K. Zhu and S. J. Li,
United duality theory for constrained extremum problems, Part II: Special Duality Schemes, J. Optim. Theory Appl., 161 (2014), 763-782.
doi: 10.1007/s10957-013-0467-5. |
show all references
References:
[1] |
R. I. Bot, Conjugate Duality in Convex Optimization, Lecture Notes in Economics and Mathematical Systems, 637. Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-04900-2. |
[2] |
R. I. Bot, S. M. Grad and G. Wanka,
New constraint qualification and conjugate duality for composed convex optimization problems, J. Optim. Theory Appl., 135 (2007), 241-255.
doi: 10.1007/s10957-007-9247-4. |
[3] |
G. Castellani and F. Giannessi, Decomposition of mathematical programs by means of theorems of alternative for linear and nonlinear systems, In: Proc. Ninth Internat. Math. Programming Sympos., Budapest. Survey of Mathematical Programming, North-Holland, Amsterdam, 2 (1979), 423-439. |
[4] |
J. W. Chen, S. J. Li, Z. P. Wang and J. C. Yao,
Vector variational-like inequalities with constraints: Separation and alternative, J. Optim. Theory Appl., 166 (2015), 460-479.
doi: 10.1007/s10957-015-0736-6. |
[5] |
M. Chinaie and J. Zafarani,
Image space analysis and scalarization of multivalued optimization, J. Optim. Theory Appl., 142 (2009), 451-467.
doi: 10.1007/s10957-009-9531-6. |
[6] |
P. H. Dien, G. Mastroeni, M. Pappalardo and P. H. Quang,
Regularity condition for constrained extreme problems via image space, J. Optim. Theory Appl., 80 (1994), 19-37.
doi: 10.1007/BF02196591. |
[7] |
F. Giannessi,
Theorems of the alternative and optimality conditions, J. Optim. Theory Appl., 42 (1984), 331-365.
doi: 10.1007/BF00935321. |
[8] |
F. Giannessi,
On the theory of Lagrangian duality, Optim. Lett., 1 (2007), 9-20.
doi: 10.1007/s11590-006-0013-6. |
[9] |
F. Giannessi, Constrained Optimization and Image Space Analysis, Separation of Sets and Optimality Conditions, vol. 1. Springer, Berlin, 2005. |
[10] |
C. Gutiérrez, B. Jiménez and V. Novo,
On approximate solutions in vector optimization problems via scalarization, Comput. Optim. Appl., 35 (2006), 305-324.
doi: 10.1007/s10589-006-8718-0. |
[11] |
F. Giannessi and G. Mastroeni,
Separation of sets and Wolfe duality, J. Glob. Optim., 42 (2008), 401-412.
doi: 10.1007/s10898-008-9301-2. |
[12] |
F. Giannessi, G. Mastroeni and L. Pellegrini, On the theory of vector optimization and variational inequalities, Image space analysis and seperation, In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, Kluwer Academic, Dordrech, (2000), 153-215. Google Scholar |
[13] |
J. Li, S. Q. Feng and Z. Zhang,
A unified approach for constrained extremum problems: Image space analysis, J. Optim. Theory Appl., 159 (2013), 69-92.
doi: 10.1007/s10957-013-0276-x. |
[14] |
S. J. Li, Y. D. Xu and S. K. Zhu,
Nonlinear separation approach to constrained extremum problems, J. Optim. Theory Appl., 154 (2012), 842-856.
doi: 10.1007/s10957-012-0027-4. |
[15] |
G. Mastroeni, Optimality conditions and image space analysis for vector optimization problems, In: Ansari, Q.H., Yao, J.-C. (eds.) Recent Developments in Vector Optimization, Vector Optimization, Springer, Dordrecht, 1 (2012), 169-220.
doi: 10.1007/978-3-642-21114-0_6. |
[16] |
G. Mastroeni,
On the image space analysis for vector quasi-equilibrium problems with a variable ordering relation, J. Glob. Optim., 53 (2012), 203-214.
doi: 10.1007/s10898-011-9674-5. |
[17] |
G. Mastroeni,
Some applications of the image space analysis to the duality theory for constrained extremum problems, J. Glob. Optim., 46 (2010), 603-614.
doi: 10.1007/s10898-009-9445-8. |
[18] |
G. Mastroeni,
Nonlinear separation in the image space with applications to penalty methods, Appl. Anal., 91 (2012), 1901-1914.
doi: 10.1080/00036811.2011.614603. |
[19] |
G. Mastroeni, M. Pappalardo and N. D. Yen,
Image of a parametric optimization problem and continuity of the perturbation function, J. Optim. Theory Appl., 81 (1994), 193-202.
doi: 10.1007/BF02190319. |
[20] |
A. Moldovan and L. Pellegrini,
On regularity for constrained extremum problems. Part 1: Suffficient optimality conditions, J. Optim. Theory Appl., 142 (2009), 147-163.
doi: 10.1007/s10957-009-9518-3. |
[21] |
A. Moldovan and L. Pellegrini,
On regularity for constrained extremum problems. Part 2: Necessary optimality conditions, J. Optim. Theory Appl., 142 (2009), 165-183.
doi: 10.1007/s10957-009-9521-8. |
[22] |
M. Pappalardo,
Image space approach to penalty methods, J. Optim. Theory Appl., 64 (1990), 141-152.
doi: 10.1007/BF00940028. |
[23] |
T. Tanino,
Conjugate duality in vector optimization, J. Math. Anal. Appl., 167 (1992), 84-97.
doi: 10.1016/0022-247X(92)90237-8. |
[24] |
F. Tardella,
On the image of a constrained extremum problem and some applications to existence of a minimum, J. Optim. Theory Appl., 60 (1989), 93-104.
doi: 10.1007/BF00938802. |
[25] |
Y. D. Xu and S. J. Li,
Gap functions and error bounds for weak vector variational inequalities, Optimization, 63 (2014), 1339-1352.
doi: 10.1080/02331934.2012.721115. |
[26] |
Y. D. Xu and S. J. Li,
Nonlinear separation functions and constrained extremum problems, Optim. Lett., 8 (2014), 1149-1160.
doi: 10.1007/s11590-013-0644-3. |
[27] |
S. K. Zhu and S. J. Li,
United duality theory for constrained extremum problems. Part I: Image space analysis, J. Optim. Theory Appl., 161 (2014), 738-762.
doi: 10.1007/s10957-013-0468-4. |
[28] |
S. K. Zhu and S. J. Li,
United duality theory for constrained extremum problems, Part II: Special Duality Schemes, J. Optim. Theory Appl., 161 (2014), 763-782.
doi: 10.1007/s10957-013-0467-5. |

[1] |
Israa Mohammed Khudher, Yahya Ismail Ibrahim, Suhaib Abduljabbar Altamir. Individual biometrics pattern based artificial image analysis techniques. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2020056 |
[2] |
Andrea Scapin. Electrocommunication for weakly electric fish. Inverse Problems & Imaging, 2020, 14 (1) : 97-115. doi: 10.3934/ipi.2019065 |
[3] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[4] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[5] |
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909 |
[6] |
Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017 |
[7] |
Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321 |
[8] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[9] |
Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149 |
[10] |
Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021008 |
[11] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[12] |
Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051 |
[13] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[14] |
Sohana Jahan. Discriminant analysis of regularized multidimensional scaling. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 255-267. doi: 10.3934/naco.2020024 |
[15] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[16] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[17] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027 |
[18] |
Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013 |
[19] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[20] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]