\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Cost of fairness in agent scheduling for contact centers

Abstract Full Text(HTML) Figure(9) / Table(19) Related Papers Cited by
  • We study a workforce scheduling problem faced in contact centers with considerations on a fair distribution of shifts in compliance with agent preferences. We develop a mathematical model that aims to minimize operating costs associated with labor, transportation of agents, and lost customers. Aside from typical work hour-related constraints, we also try to conform with agents' preferences for shifts, as a measure of fairness. We plot the trade-off between agent satisfaction and total operating costs for Vestel, one of Turkey's largest consumer electronics companies. We present insights on the increased cost to have content and a fair environment on several agent availability scenarios.

    Mathematics Subject Classification: Primary: 90B90; Secondary: 90-10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Forecasted Intraday Call Volumes

    Figure 2.  Required and Working Agents

    Figure 3.  Demand Volumes

    Figure 4.  Preference Scores

    Figure 5.  Distribution of Agents in Shifts

    Figure 6.  Cost and Fairness Values for P1

    Figure 7.  Total Understaffed and Working Hours for P1

    Figure 8.  Cost and Fairness Values for P2

    Figure 9.  Total Understaffed and Working Hours for P2

    Table 1.  Model Inputs and Outputs

    Inputs Outputs
    Demand for a Theoretical Day
    Scheduling/Planning Horizon Number of Agents in Each Shift
    Time Intervals and Possible Shifts Total Employee Cost
    Break Time Distribution Rules Total Shuttle Cost
    Shuttle (Transportation) Costs Understaffed Hours
    Agent Wages and Undesirability Cost of Shifts Agent-Shift Assignments
    Cost of Understaffing Total Satisfaction Score
    Shift Preference Scores of Agents Fairness Score Distribution
    Fairness Bounds
     | Show Table
    DownLoad: CSV

    Table 2.  Inputs and a Sample Assignment

     | Show Table
    DownLoad: CSV

    Table 3.  Break Time (Effectiveness) Factor

     | Show Table
    DownLoad: CSV

    Table 4.  Preference Scoring Sample

    $ \textbf{Preference Priority} $ Preference Score
    First 8
    Second 4
    Third 2
    Fourth 1
    Not preferred 0
     | Show Table
    DownLoad: CSV

    Table 5.  Preference Matrix Sample

    $ \textbf{agents} $ shift 1 shift 2 shift 3 shift 4 shift 5 shift 6 shift 7 shift 8
    agent 1 8 4 0 0 1 0 0 2
    agent 2 8 4 0 0 0 0 2 1
    agent 3 4 8 0 2 0 0 0 1
    agent 4 4 2 0 1 0 0 8 0
    agent 5 4 2 0 1 0 8 0 0
    agent 6 2 1 8 4 0 0 0 0
    agent 7 1 2 0 4 8 0 0 0
    agent 8 0 0 1 2 4 0 0 8
    agent 9 0 8 0 4 2 0 0 1
     | Show Table
    DownLoad: CSV

    Table 6.  Model Parameters

    Description Parameter
    Week Index in Planning Horizon $ w $
    Shift Index $ s $
    Time Interval Index in a Day $ t $
    Agent Index $ i $
    Individual Fairness Lower Limit $ h $
    Overall Fairness Lower Limit $ H $
    Weekly Cost Per Agent $ c^\text{agent} $
    Cost Estimation for 1% of Understaffing $ c^{\text{understaff}} $
    Cost of Shift Undesirability $ c^{\text{undesirable}}_s $
    Average Per Person Arrival Shuttle Cost for Intervals $ c^{\text{v}}_t $
    Average Per Person Departure Shuttle Cost for Intervals $ c'^{\text{v}}_t $
    Break Time Factor (Effectiveness) of Agent in Intervals of Shift $ a^s_t $
    Demand in Intervals of Weeks $ d^w_t $
    Agents' Preference Value of Shifts $ p_{is} $
    Starting Interval Binary of Shifts $ s_t^s $
    Ending Interval Binary of Shifts $ e_t^s $
     | Show Table
    DownLoad: CSV

    Table 7.  Decision Variables

    Description Notation
    Binary Variable of Agents' Shift in Weeks $ Y_{isw} $
    Individual Average Fairness Score Auxiliary Variable of Working Weeks $ A_{iw} $
    Individual Average Weekly Fairness Score Variable $ Z_i $
    Number of Agents Variable in Shifts of Weeks $ X^w_s $
    Understaffed Level Variable in Intervals $ U^w_t $
     | Show Table
    DownLoad: CSV

    Table 8.  Shift Descriptions

     | Show Table
    DownLoad: CSV

    Table 9.  Shuttle Costs

     | Show Table
    DownLoad: CSV

    Table 10.  Parameter Values

    Description Parameter Value
    Number of Weeks $ |W| $ 4
    Number of Shifts $ |S| $ 17
    Number of Time Intervals $ |T| $ 24
    Number of Agent $ |I| $ 150
    Agent Cost $ c^{\text{agent}} $ $200
    Understaffing Coeffcient $ c^{\text{understaff}} $ $10
     | Show Table
    DownLoad: CSV

    Table 11.  Fairness Distribution

    $ Z_i $ Range/$ h $ 0 1 2 3 4 5 6 7 8
    [0-1) 83 0 0 0 0 0 0 0 0
    [1-2) 19 62 0 0 0 0 0 0 0
    [2-3) 35 68 120 0 0 0 0 0 0
    [3-4) 8 9 14 89 0 0 0 0 0
    [4-5) 3 8 12 61 130 0 0 0 0
    [5-6) 0 1 3 0 14 81 0 0 0
    [6-7) 0 2 1 0 6 68 149 0 0
    [7-8) 0 0 0 0 0 0 1 77 0
    [8] 2 0 0 0 0 1 0 73 150
    Total Satisfaction Score 178 289 370 519 640 824 904 1123 1200
    Cost (in $1000) 139 139 139 139 140 143 157 522 618
     | Show Table
    DownLoad: CSV

    Table 12.  Comparison of P1 and P2

    Overall Fairness Score 640 824 904 1123
    P1 Cost ($1000) 140 143 157 522
    P2 Cost ($1000) 139 139 141 304
    (P1 Cost - P2 Cost) / P2 Cost 0.7% 2.3% 10.9% 71.5%
     | Show Table
    DownLoad: CSV

    Table 13.  Fairness Distribution for P2

    $ Z_i $ Range/$ H $ 640 824 904 1123
    [0-1) 23 16 17 0
    [1-2) 10 7 6 2
    [2-3) 25 9 7 3
    [3-4) 5 4 2 0
    [4-5) 19 17 7 11
    [5-6) 11 6 3 0
    [6-7) 17 20 12 1
    [7-8) 2 5 12 0
    [8] 38 66 84 133
    Cost (in $1000) 139 139 141 304
     | Show Table
    DownLoad: CSV

    Table 14.  Available Shifts for Agent Groups

    Shifts Unrestricted Pregnant Disabled Student Distant
    1 $ \bullet $ $ \bullet $ $ \bullet $ $ \bullet $
    2 $ \bullet $ $ \bullet $ $ \bullet $
    3 $ \bullet $ $ \bullet $ $ \bullet $
    4 $ \bullet $
    5 $ \bullet $ $ \bullet $
    6 $ \bullet $
    7 $ \bullet $
    8 $ \bullet $
    9 $ \bullet $
    10 $ \bullet $
    11 $ \bullet $
    12 $ \bullet $
    13 $ \bullet $
    14 $ \bullet $
    15 $ \bullet $ $ \bullet $
    16 $ \bullet $ $ \bullet $ $ \bullet $
    17 $ \bullet $ $ \bullet $ $ \bullet $
     | Show Table
    DownLoad: CSV

    Table 15.  Number of Agents in Groups

    Scenario Unrestricted Pregnant Disabled Student Distant
    high restriction 30 20 20 20 60
    med. restriction 90 10 10 10 30
    low restriction 120 5 5 5 15
    no restriction 150 0 0 0 0
     | Show Table
    DownLoad: CSV

    Table 16.  Cost of Restriction

    no rest. low rest. medium rest. high rest.
    total cost ($1000) 139 139 139 159
    cost gap - 0% 0% 14%
     | Show Table
    DownLoad: CSV

    Table 17.  Cost of Fairness Levels with Restriction in $1000

    no rest. low rest. med. rest. high rest.
    h=4 140 140 140 193
    h=5 143 144 155 224
    h=6 157 160 176 243
     | Show Table
    DownLoad: CSV

    Table 18.  Efficient Solutions for Fairness Levels with Restriction

    Cost Acceptable Solution 1 Solution 2
    Tolerance Cost ($1000)
    0% 139 h=0|medium rest. scenario N/A
    1% 140 h=4|medium rest. scenario
    2% 141
    3% 143 h=5|no rest. scenario
    4% 144
    5% 146
    10% 153
    15% 160 h=5|medium rest. scenario h=6|low rest. scenario
     | Show Table
    DownLoad: CSV

    Table 19.  Solution Times for Instances

    Restrictions Preferences Bound $ h $ for P1 $ H $ for P2 Time (sec)
    None Individual – P1 0 3
    1 7
    2 17
    3 1257
    4 117
    5 126
    6 49
    7 14
    8 5
    Overall – P2 640 12
    824 18
    904 16
    1123 10
    Low Individual – P1 0 5
    4 20
    5 30
    6 20
    Medium 0 3
    4 12
    5 14
    6 9
    High 0 2
    4 7
    5 9
    6 6
     | Show Table
    DownLoad: CSV
  • [1] H. P. Benson, An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem, Journal of Global Optimization, 13 (1998), 1-24.  doi: 10.1023/A:1008215702611.
    [2] I. Blöchliger, Modeling staff scheduling problems. A tutorial, European Journal of Operational Research, 158 (2004), 533-542.  doi: 10.1016/S0377-2217(03)00387-4.
    [3] P. BruckerR. Qu and E. Burke, Personnel scheduling: Models and complexity, European Journal of Operational Research, 210 (2011), 467-473.  doi: 10.1016/j.ejor.2010.11.017.
    [4] I. CastilloT. Joro and Y. Y. Li, Workforce scheduling with multiple objectives, European Journal of Operational Research, 196 (2009), 162-170.  doi: 10.1016/j.ejor.2008.02.038.
    [5] D. Creelman, Top trends in workforce management: How technology provides significant value managing your people (2014), http://audentia-gestion.fr/oracle/workforce-management-2706797.pdf, 2014.
    [6] A. T. ErnstH. JiangM. Krishnamoorthy and D. Sier, Staff scheduling and rostering: A review of applications, methods and models, European Journal of Operational Research, 153 (2004), 3-27.  doi: 10.1016/S0377-2217(03)00095-X.
    [7] R. Fink and J. Gillett, Queuing theory and the Taguchi loss function: The cost of customer dissatisfaction in waiting lines, International Journal of Strategic Cost Management, 17–25.
    [8] D. Fluss, Workforce management: Better but not good enough, https://www.destinationcrm.com/Articles/Columns-Departments/Scouting-Report/Workforce-Management-Better-but-Not-Good-Enough-90113.aspx, 2013.
    [9] L. Golden, Irregular work scheduling and its consequences, Economic Policy Institute Briefing Paper, 1, No. 394, 41 pp. doi: 10.2139/ssrn.2597172.
    [10] Gurobi, Gurobi Optimizer 8 Reference Manual, Gurobi Optimization, Inc., 2020.
    [11] ICMI, The State of Workforce Management, Technical report, International Customer Management Institute, 2017.
    [12] S. JütteD. Müller and U. W. Thonemann, Optimizing railway crew schedules with fairness preferences, Journal of Scheduling, 20 (2017), 43-55.  doi: 10.1007/s10951-016-0499-4.
    [13] L. Kletzander and N. Musliu, Solving the general employee scheduling problem, Computers & Operations Research, 113 (2020), 104794, 13 pp. doi: 10.1016/j.cor.2019.104794.
    [14] G. Koole and A. Mandelbaum, Queueing models of call centers: An introduction, Annals of Operations Research, 113 (2002), 41-59.  doi: 10.1023/A:1020949626017.
    [15] C. K. Y. LinK. F. Lai and S. L. Hung, Development of a workforce management system for a customer hotline service, Computers & Operations Research, 27 (2000), 987-1004.  doi: 10.1016/S0305-0548(99)00072-6.
    [16] M. Liu, X. Liu, F. Chu, E. Zhang and C. Chu, Service-oriented robust worker scheduling with motivation effects, International Journal of Production Research, 1–24. doi: 10.1080/00207543.2020.1730998.
    [17] J. LywoodM. Stone and Y. Ekinci, Customer experience and profitability: An application of the empathy rating index (ERIC) in UK call centres, Journal of Database Marketing & Customer Strategy Management, 16 (2009), 207-214.  doi: 10.1057/dbm.2009.24.
    [18] J. Manyika, S. Lund, M. Chui, J. Bughin, J. Woetzel, P. Batra, R. Ko and S. Sanghvi, Jobs lost, jobs gained: Workforce transitions in a time of automation, McKinsey Global Institute.
    [19] S. Mohan, Scheduling part-time personnel with availability restrictions and preferences to maximize employee satisfaction, Mathematical and Computer Modelling, 48 (2008), 1806-1813.  doi: 10.1016/j.mcm.2007.12.027.
    [20] E. L. ÖrmeciF. S. Salman and E. Yücel, Staff rostering in call centers providing employee transportation, Omega, 43 (2014), 41-53.  doi: 10.1016/j.omega.2013.06.003.
    [21] R. Pastor and J. Olivella, Selecting and adapting weekly work schedules with working time accounts: A case of a retail clothing chain, European Journal of Operational Research, 184 (2008), 1-12.  doi: 10.1016/j.ejor.2006.10.028.
    [22] M. RochaJ. F. Oliveira and M. A. Carravilla, Cyclic staff scheduling: optimization models for some real-life problems, Journal of Scheduling, 16 (2013), 231-242.  doi: 10.1007/s10951-012-0299-4.
    [23] R. K. Roy, Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement, John Wiley & Sons, 2001.
    [24] R. Schalk and A. Van Rijckevorsel, Factors influencing absenteeism and intention to leave in a call centre, New Technology, Work and Employment, 22 (2007), 260-274.  doi: 10.1111/j.1468-005X.2007.00198.x.
    [25] G. Smart, What contributes to the cost of a contact center?, https://www.niceincontact.com/blog/what-contributes-to-the-cost-of-a-contact-center-1, 2010.
    [26] J. Van den BerghJ. BeliënP. De BrueckerE. Demeulemeester and L. De Boeck, Personnel scheduling: A literature review, European Journal of Operational Research, 226 (2013), 367-385.  doi: 10.1016/j.ejor.2012.11.029.
    [27] M. Van Den EeckhoutM. Vanhoucke and B. Maenhout, A decomposed branch-and-price procedure for integrating demand planning in personnel staffing problems, European Journal of Operational Research, 280 (2020), 845-859.  doi: 10.1016/j.ejor.2019.07.069.
    [28] Vestel, Towards New Horizons: 2019 Annual Report, http://www.vestelinvestorrelations.com/en/financials/annual-reports.aspx, 2019.
    [29] WorkForceSoftware, New Survey: The 6 Most Critical Workforce Management Issues of 2017, https://www.workforcesoftware.com/blog/6-workforce-management-issues-2017/, 2017.
    [30] P. D. Wright and S. Mahar, Centralized nurse scheduling to simultaneously improve schedule cost and nurse satisfaction, Omega, 41 (2013), 1042-1052.  doi: 10.1016/j.omega.2012.08.004.
  • 加载中

Figures(9)

Tables(19)

SHARE

Article Metrics

HTML views(895) PDF downloads(503) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return