• Previous Article
    Ambulance routing in disaster response considering variable patient condition: NSGA-II and MOPSO algorithms
  • JIMO Home
  • This Issue
  • Next Article
    Two-agent integrated scheduling of production and distribution operations with fixed departure times
March  2022, 18(2): 1009-1034. doi: 10.3934/jimo.2021006

Stabilization of 2-d Mindlin-Timoshenko plates with localized acoustic boundary feedback

1. 

Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China

2. 

School of Mechanical Engineering & Mechanics, Ningbo University, Ningbo, Zhejiang 315211, China

3. 

Ningbo Artificial Intelligence Institute, Shanghai Jiao Tong University, Ningbo, Zhejiang 315000, China

* Corresponding author: Chunguo Zhang, Tehuan Chen

Received  September 2020 Revised  November 2020 Published  March 2022 Early access  December 2020

Fund Project: This research was supported by the National Key R & D Program of China (No. 2019YFB1705800), the National Natural Science Foundation of China under (No. 61973270), the Fundamental Research Funds for the Central Universities of China (No. 2018XZZX001-09) and Zhejiang Provincial Natural Science Foundation of China (No. LY21F030003)

In this paper, we investigate the well-posedness and the asymptotic stability of a two dimensional Mindlin-Timoshenko plate imposed the so-called acoustic control by a part of the boundary and a Dirichlet boundary condition on the remainder. We first establish the well-posedness results of our model based on the theory of linear operator semigroup and then prove that the system is not exponentially stable by using the frequency domain approach. Finally, we show that the system is polynomially stable with the aid of the exponential or polynomial stability of a system with standard damping acting on a part of the boundary.

Citation: Yubiao Liu, Chunguo Zhang, Tehuan Chen. Stabilization of 2-d Mindlin-Timoshenko plates with localized acoustic boundary feedback. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1009-1034. doi: 10.3934/jimo.2021006
References:
[1]

Z. Abbas and S. Nicaise, The Multidimensional wave equation with generalized acoustic boundary conditions I: Strong stability, SIAM J. Control Optim, 53 (2015), 2558–2581. doi: 10.1137/140971336.

[2]

Z. Abbas and S. Nicaise, The Multidimensional wave equation with generalized acoustic boundary conditions II: Polynomial stability, SIAM J. Control Optim, 53 (2015), 2582–2607. doi: 10.1137/140971348.

[3] R. A. Adams, Sobolev Spaces, 1$^nd$ edition, Academic Press, New York, 1975. 
[4]

H. Barucq, J. Diaz and V. Duprat, Long-term stability analsis of acoustic absorbing boundary conditions, Mathematical Models and Methods in Applied Sciences, 23 (2013), 2129–2154. doi: 10.1142/S0218202513500280.

[5]

J. T. Beale, Spectral properties of an acoustic boundary condition, Indiana University Mathematics Journal, 25 (1976), 895–917. doi: 10.1512/iumj.1976.25.25071.

[6]

A. Benaissa and A. Kasmi, Well-posedeness and energy decay of solutions to a bresse system with a boundary dissipation of fractional derivative type, Discrete & Continuous Dynamical Systems-Series-B, 23 (2018), 4361–4395. doi: 10.3934/dcdsb.2018168.

[7]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Mathematische Annalen, 347 (2010), 455–478. doi: 10.1007/s00208-009-0439-0.

[8]

X. Cai, L. Liao and Y. Sun, Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model, Discrete & Continuous Dynamical Systems-Series-S, 7 (2014), 917–923. doi: 10.3934/dcdss.2014.7.917.

[9]

G. Chen, Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain, Journal de Mathematiques et Pure Appliquees, 58 (1979), 249–273.

[10]

C. M. Dafermos, On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity, Archive for Rational Mechanics and Analysis, 29 (1968), 241–271. doi: 10.1007/BF00276727.

[11]

M. G.-V. Dalsen, Exponential stabilization of magnetoelastic waves in a Mindlin-Timoshenko plate by localized internal damping, Zeitschrift für angewandte Mathematik und Physik, 66 (2015), 1751–1776. doi: 10.1007/s00033-015-0507-0.

[12]

M. S. de Queiroz, D.M. Dawson, M. Agarwal and F. Zhang, Adaptive nonlinear boundary control of a flexible link robot arm, IEEE Conference on Decision and Control, (2002). doi: 10.1109/CDC.1997.657642.

[13]

S.-R. Deng, B.-R. Lu, B.-Q. Dong, et al, Effective polarization control of metallic planar chiral metamaterials with complementary rosette pattern fabricated by nanoimprint lithography, Microelectronic Engineering, 87 (2013), 985–988. doi: 10.1016/j.mee.2009.11.123.

[14]

L. C. Evans, Partial Differential Equations, 2$^nd$ edition, American Mathematical Society, 1998.

[15]

L. Gearhart, Spectral theory for contraction semigroups on Hilbert space, Transactions of the American Mathematical Society, 236 (1978), 385–394. doi: 10.1090/S0002-9947-1978-0461206-1.

[16]

B.-Z. Guo and C.-Z. Xu, The stabilization of a one-dimensional wave equation by boundary feedback with non-collocated observation, IEEE Transactions on Automatic Control, 52 (2007), 371–377. doi: 10.1109/TAC.2006.890385.

[17]

J. Henry, J. Blondeau and D. Pines, Stability analysis for UAVs with a variable aspect ratio wing, AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 46 (2005), 18–21.

[18]

F. L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Annals of Differential Equations, 1 (1985), 43–56.

[19]

M. Krstic, D. Fontaine, P. V. Kokotovic and J. D. Paduano, Useful nonlinearities and global stabilization of bifurcations in a model of jet engine surge and stall, IEEE Transactions on Automatic Control, 43 (1998), 1739–1745. doi: 10.1109/9.736075.

[20]

J. E. Lagnese, Boundary Stabilization of Thin Plates, Philadelphia: SIAM J. Control Optim, 1989. doi: 10.1137/1.9781611970821.

[21]

J. E. Lagnese and J. L. Lions, Modelling, Analysis and Control of Thin Plates, 1$^{nd}$ edition, SIAM Journal on Control and Optimization, Philadelphia, 1989. doi: 10.1137/1.9781611970821.

[22]

C. Y. Lin, E. F. Crawley and J. Heeg, Open and closed-loop results of a strain-actuated active aeroelastic wing, Journal of Aircraft, 33 (2012), 987–994. doi: 10.2514/3.47045.

[23]

B. Liu and W. Littman, On the spectral properties and stabilization of acoustic flow, SIAM J. Appl. Math, 59 (1998), 17–34. doi: 10.1137/S0036139996314106.

[24]

K. Liu and Z. Liu, Exponential decay of energy of vibrating strings with local viscoelasticity, Z. Angew. Math. Phys, 53 (2002), 265–280. doi: 10.1007/s00033-002-8155-6.

[25]

S. A. Messaoudi and M. I. Mustafa, A general stability result in a memory-type Timoshenko system, Communications on Pure & Applied Analysis, 12 (2013), 957–972. doi: 10.3934/cpaa.2013.12.957.

[26]

Ö. Morgül, Dynamic boundary control of a Euler-Bernoulli beam, IEEE Transactions on Automatic Control, 37 (2002), 639–642. doi: 10.1109/9.135504.

[27]

Ö. Morgül, Dynamic boundary control of a Timoshenko beam, Automatica, 28 (1992), 1255–1260. doi: 10.1016/0005-1098(92)90070-V.

[28]

M. Nakao, Decay of solutions of the wave equation with a local nonlinear dissipation, Mathematische Annalen, 305 (1996), 403–417. doi: 10.1007/BF01444231.

[29]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, 2$^{nd}$ edition Springer-Verlag New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[30]

J. Prüss, On the spectrum of $C_0$-semigroups, Transactions of the American Mathematical Society, 284 (1984), 847–857. doi: 10.2307/1999112.

[31]

J. E. M. Rivera1 and Y. Qin, Polynomial decay for the energy with an acoustic boundary condition, Applied Mathematics Letters, 16 (2003), 249–256. doi: 10.1016/S0893-9659(03)80039-3.

[32]

D. L. Russell and B. Y. Zhang, Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain, SIAM J. Control Optim, 31 (1993), 659–676. doi: 10.1137/0331030.

[33]

J.-H. Ryu, D.-S. Kwon, and B. Hannaford, Control of a flexible manipulator with noncollocated feedback: Time-domain passivity approach, IEEE Transactions on Robotics, 20 (2004), 776–780. doi: 10.1109/TRO.2004.829454.

[34]

H. D. F. Sare, On the stability of Mindlin-Timoshenko plates, Quarterly Journal of Mechanics & Applied Mathematics, 67 (2009), 249–263. doi: 10.1090/S0033-569X-09-01110-2.

[35]

A. Smyshlyaev, B.-Z. Guo and Miroslav Krstic, Arbitrary decay rate for Euler-Bernoulli beam by backstepping boundary feedback, IEEE Transactions on Automatic Control, 54 (2009), 1134–1140. doi: 10.1109/TAC.2009.2013038.

[36]

L. Tebou, Well-posedness and stabilization of an Euler-Bernoulli equation with a localized nonlinear dissipation involving the p-Laplacian, Discrete & Continuous Dynamical Systems-Series A, 32 (2012), 2315–2337. doi: 10.3934/dcds.2012.32.2315.

[37]

A. Wehbe, Rational energy decay rate for a wave equation with dynamical control, Applied Mathematics Letters, 16 (2003), 357–364. doi: 10.1016/S0893-9659(03)80057-5.

show all references

References:
[1]

Z. Abbas and S. Nicaise, The Multidimensional wave equation with generalized acoustic boundary conditions I: Strong stability, SIAM J. Control Optim, 53 (2015), 2558–2581. doi: 10.1137/140971336.

[2]

Z. Abbas and S. Nicaise, The Multidimensional wave equation with generalized acoustic boundary conditions II: Polynomial stability, SIAM J. Control Optim, 53 (2015), 2582–2607. doi: 10.1137/140971348.

[3] R. A. Adams, Sobolev Spaces, 1$^nd$ edition, Academic Press, New York, 1975. 
[4]

H. Barucq, J. Diaz and V. Duprat, Long-term stability analsis of acoustic absorbing boundary conditions, Mathematical Models and Methods in Applied Sciences, 23 (2013), 2129–2154. doi: 10.1142/S0218202513500280.

[5]

J. T. Beale, Spectral properties of an acoustic boundary condition, Indiana University Mathematics Journal, 25 (1976), 895–917. doi: 10.1512/iumj.1976.25.25071.

[6]

A. Benaissa and A. Kasmi, Well-posedeness and energy decay of solutions to a bresse system with a boundary dissipation of fractional derivative type, Discrete & Continuous Dynamical Systems-Series-B, 23 (2018), 4361–4395. doi: 10.3934/dcdsb.2018168.

[7]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Mathematische Annalen, 347 (2010), 455–478. doi: 10.1007/s00208-009-0439-0.

[8]

X. Cai, L. Liao and Y. Sun, Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model, Discrete & Continuous Dynamical Systems-Series-S, 7 (2014), 917–923. doi: 10.3934/dcdss.2014.7.917.

[9]

G. Chen, Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain, Journal de Mathematiques et Pure Appliquees, 58 (1979), 249–273.

[10]

C. M. Dafermos, On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity, Archive for Rational Mechanics and Analysis, 29 (1968), 241–271. doi: 10.1007/BF00276727.

[11]

M. G.-V. Dalsen, Exponential stabilization of magnetoelastic waves in a Mindlin-Timoshenko plate by localized internal damping, Zeitschrift für angewandte Mathematik und Physik, 66 (2015), 1751–1776. doi: 10.1007/s00033-015-0507-0.

[12]

M. S. de Queiroz, D.M. Dawson, M. Agarwal and F. Zhang, Adaptive nonlinear boundary control of a flexible link robot arm, IEEE Conference on Decision and Control, (2002). doi: 10.1109/CDC.1997.657642.

[13]

S.-R. Deng, B.-R. Lu, B.-Q. Dong, et al, Effective polarization control of metallic planar chiral metamaterials with complementary rosette pattern fabricated by nanoimprint lithography, Microelectronic Engineering, 87 (2013), 985–988. doi: 10.1016/j.mee.2009.11.123.

[14]

L. C. Evans, Partial Differential Equations, 2$^nd$ edition, American Mathematical Society, 1998.

[15]

L. Gearhart, Spectral theory for contraction semigroups on Hilbert space, Transactions of the American Mathematical Society, 236 (1978), 385–394. doi: 10.1090/S0002-9947-1978-0461206-1.

[16]

B.-Z. Guo and C.-Z. Xu, The stabilization of a one-dimensional wave equation by boundary feedback with non-collocated observation, IEEE Transactions on Automatic Control, 52 (2007), 371–377. doi: 10.1109/TAC.2006.890385.

[17]

J. Henry, J. Blondeau and D. Pines, Stability analysis for UAVs with a variable aspect ratio wing, AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 46 (2005), 18–21.

[18]

F. L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Annals of Differential Equations, 1 (1985), 43–56.

[19]

M. Krstic, D. Fontaine, P. V. Kokotovic and J. D. Paduano, Useful nonlinearities and global stabilization of bifurcations in a model of jet engine surge and stall, IEEE Transactions on Automatic Control, 43 (1998), 1739–1745. doi: 10.1109/9.736075.

[20]

J. E. Lagnese, Boundary Stabilization of Thin Plates, Philadelphia: SIAM J. Control Optim, 1989. doi: 10.1137/1.9781611970821.

[21]

J. E. Lagnese and J. L. Lions, Modelling, Analysis and Control of Thin Plates, 1$^{nd}$ edition, SIAM Journal on Control and Optimization, Philadelphia, 1989. doi: 10.1137/1.9781611970821.

[22]

C. Y. Lin, E. F. Crawley and J. Heeg, Open and closed-loop results of a strain-actuated active aeroelastic wing, Journal of Aircraft, 33 (2012), 987–994. doi: 10.2514/3.47045.

[23]

B. Liu and W. Littman, On the spectral properties and stabilization of acoustic flow, SIAM J. Appl. Math, 59 (1998), 17–34. doi: 10.1137/S0036139996314106.

[24]

K. Liu and Z. Liu, Exponential decay of energy of vibrating strings with local viscoelasticity, Z. Angew. Math. Phys, 53 (2002), 265–280. doi: 10.1007/s00033-002-8155-6.

[25]

S. A. Messaoudi and M. I. Mustafa, A general stability result in a memory-type Timoshenko system, Communications on Pure & Applied Analysis, 12 (2013), 957–972. doi: 10.3934/cpaa.2013.12.957.

[26]

Ö. Morgül, Dynamic boundary control of a Euler-Bernoulli beam, IEEE Transactions on Automatic Control, 37 (2002), 639–642. doi: 10.1109/9.135504.

[27]

Ö. Morgül, Dynamic boundary control of a Timoshenko beam, Automatica, 28 (1992), 1255–1260. doi: 10.1016/0005-1098(92)90070-V.

[28]

M. Nakao, Decay of solutions of the wave equation with a local nonlinear dissipation, Mathematische Annalen, 305 (1996), 403–417. doi: 10.1007/BF01444231.

[29]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, 2$^{nd}$ edition Springer-Verlag New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[30]

J. Prüss, On the spectrum of $C_0$-semigroups, Transactions of the American Mathematical Society, 284 (1984), 847–857. doi: 10.2307/1999112.

[31]

J. E. M. Rivera1 and Y. Qin, Polynomial decay for the energy with an acoustic boundary condition, Applied Mathematics Letters, 16 (2003), 249–256. doi: 10.1016/S0893-9659(03)80039-3.

[32]

D. L. Russell and B. Y. Zhang, Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain, SIAM J. Control Optim, 31 (1993), 659–676. doi: 10.1137/0331030.

[33]

J.-H. Ryu, D.-S. Kwon, and B. Hannaford, Control of a flexible manipulator with noncollocated feedback: Time-domain passivity approach, IEEE Transactions on Robotics, 20 (2004), 776–780. doi: 10.1109/TRO.2004.829454.

[34]

H. D. F. Sare, On the stability of Mindlin-Timoshenko plates, Quarterly Journal of Mechanics & Applied Mathematics, 67 (2009), 249–263. doi: 10.1090/S0033-569X-09-01110-2.

[35]

A. Smyshlyaev, B.-Z. Guo and Miroslav Krstic, Arbitrary decay rate for Euler-Bernoulli beam by backstepping boundary feedback, IEEE Transactions on Automatic Control, 54 (2009), 1134–1140. doi: 10.1109/TAC.2009.2013038.

[36]

L. Tebou, Well-posedness and stabilization of an Euler-Bernoulli equation with a localized nonlinear dissipation involving the p-Laplacian, Discrete & Continuous Dynamical Systems-Series A, 32 (2012), 2315–2337. doi: 10.3934/dcds.2012.32.2315.

[37]

A. Wehbe, Rational energy decay rate for a wave equation with dynamical control, Applied Mathematics Letters, 16 (2003), 357–364. doi: 10.1016/S0893-9659(03)80057-5.

[1]

Serge Nicaise. Internal stabilization of a Mindlin-Timoshenko model by interior feedbacks. Mathematical Control and Related Fields, 2011, 1 (3) : 331-352. doi: 10.3934/mcrf.2011.1.331

[2]

Tamara Fastovska. Upper semicontinuous attractor for 2D Mindlin-Timoshenko thermoelastic model with memory. Communications on Pure and Applied Analysis, 2007, 6 (1) : 83-101. doi: 10.3934/cpaa.2007.6.83

[3]

Filippo Dell'Oro, Marcio A. Jorge Silva, Sandro B. Pinheiro. Exponential stability of Timoshenko-Gurtin-Pipkin systems with full thermal coupling. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2189-2207. doi: 10.3934/dcdss.2022050

[4]

Hichem Kasri, Amar Heminna. Exponential stability of a coupled system with Wentzell conditions. Evolution Equations and Control Theory, 2016, 5 (2) : 235-250. doi: 10.3934/eect.2016003

[5]

J.E. Muñoz Rivera, Reinhard Racke. Global stability for damped Timoshenko systems. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1625-1639. doi: 10.3934/dcds.2003.9.1625

[6]

Farah Abdallah, Denis Mercier, Serge Nicaise. Spectral analysis and exponential or polynomial stability of some indefinite sign damped problems. Evolution Equations and Control Theory, 2013, 2 (1) : 1-33. doi: 10.3934/eect.2013.2.1

[7]

Alaa Hayek, Serge Nicaise, Zaynab Salloum, Ali Wehbe. Exponential and polynomial stability results for networks of elastic and thermo-elastic rods. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1183-1220. doi: 10.3934/dcdss.2021142

[8]

Jiaqin Wei, Danping Li, Yan Zeng. Robust optimal consumption-investment strategy with non-exponential discounting. Journal of Industrial and Management Optimization, 2020, 16 (1) : 207-230. doi: 10.3934/jimo.2018147

[9]

Jingzhen Liu, Liyuan Lin, Ka Fai Cedric Yiu, Jiaqin Wei. Non-exponential discounting portfolio management with habit formation. Mathematical Control and Related Fields, 2020, 10 (4) : 761-783. doi: 10.3934/mcrf.2020019

[10]

Jaime E. Muñoz Rivera, Maria Grazia Naso. About the stability to Timoshenko system with pointwise dissipation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2289-2303. doi: 10.3934/dcdss.2022078

[11]

Gilbert Peralta. Uniform exponential stability of a fluid-plate interaction model due to thermal effects. Evolution Equations and Control Theory, 2020, 9 (1) : 39-60. doi: 10.3934/eect.2020016

[12]

Xu Liu, Jun Zhou. Initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity. Electronic Research Archive, 2020, 28 (2) : 599-625. doi: 10.3934/era.2020032

[13]

Sylvia Novo, Rafael Obaya, Ana M. Sanz. Exponential stability in non-autonomous delayed equations with applications to neural networks. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 517-536. doi: 10.3934/dcds.2007.18.517

[14]

Linfang Liu, Tomás Caraballo, Xianlong Fu. Exponential stability of an incompressible non-Newtonian fluid with delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4285-4303. doi: 10.3934/dcdsb.2018138

[15]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[16]

Jérôme Buzzi, Véronique Maume-Deschamps. Decay of correlations on towers with non-Hölder Jacobian and non-exponential return time. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 639-656. doi: 10.3934/dcds.2005.12.639

[17]

Ishak Alia. A non-exponential discounting time-inconsistent stochastic optimal control problem for jump-diffusion. Mathematical Control and Related Fields, 2019, 9 (3) : 541-570. doi: 10.3934/mcrf.2019025

[18]

John A. D. Appleby, Alexandra Rodkina, Henri Schurz. Pathwise non-exponential decay rates of solutions of scalar nonlinear stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 667-696. doi: 10.3934/dcdsb.2006.6.667

[19]

Wei Zhong, Yongxia Zhao, Ping Chen. Equilibrium periodic dividend strategies with non-exponential discounting for spectrally positive Lévy processes. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2639-2667. doi: 10.3934/jimo.2020087

[20]

Lei Wang, Zhong-Jie Han, Gen-Qi Xu. Exponential-stability and super-stability of a thermoelastic system of type II with boundary damping. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2733-2750. doi: 10.3934/dcdsb.2015.20.2733

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (384)
  • HTML views (552)
  • Cited by (0)

Other articles
by authors

[Back to Top]