
-
Previous Article
Spectral norm and nuclear norm of a third order tensor
- JIMO Home
- This Issue
-
Next Article
A unified analysis for scheduling problems with variable processing times
A control parametrization based path planning method for the quad-rotor uavs
1. | College of Electrical Engineering, Sichuan University, Sichuan 610065, China |
2. | School of Aeronautics and Astronautics, Sichuan University, Sichuan 610065, China |
A time optimal path planning problem for the Quad-rotor unmanned aerial vehicles (UAVs) is investigated in this paper. A 3D environment with obstacles is considered, which makes the problem more challenging. To tackle this challenge, the problem is formulated as a nonlinear optimal control problem with continuous state inequality constraints and terminal equality constraints. A control parametrization based method is proposed. Particularly, the constraint transcription method together with a local smoothing technique is utilized to handle the continuous inequality constraints. The original problem is then transformed into a nonlinear program. The corresponding gradient formulas for both of the cost function and the constraints are derived, respectively. Simulation results show that the proposed path planning method has less tracking error than that of the rapid-exploring random tree (RRT) algorithm and that of the A star algorithm. In addition, the motor speed has less changes for the proposed algorithm than that of the other two algorithms.
References:
[1] |
X. Cheng, H. Li and R. Zhang,
Autonomous trajectory planning for space vehicles with a Newton Kantorovich/convex programming approach, Nonlinear Dynamics, 89 (2017), 2795-2814.
doi: 10.1007/s11071-017-3626-7. |
[2] |
K. Daniel, A. Nash, S. Koenig and A. Felner,
Theta*: Any-angle path planning on grids, Journal of Artificial Intelligence Research, 39 (2010), 533-579.
doi: 10.1613/jair.2994. |
[3] |
A. Dehghan and M. Shah,
Binary quadratic programing for online tracking of hundreds of people in extremely crowded scenes, IEEE Transactions on Pattern Analysis and Machine Intelligence, 40 (2018), 568-581.
|
[4] |
H. Ergezer and and K. Leblebiciolu,
3D path planning for multiple UAVs for maximum information collection, Journal of Intelligent and Robotic Systems, 73 (2014), 737-762.
|
[5] |
L. D. Filippis, G. Guglieri and F. Quagliotti,
Path planning strategies for UAVS in 3D environments, Journal of Intelligent and Robotic Systems, 65 (2012), 247-264.
|
[6] |
J. L. Foo, J. Knutzon, V. Kalivarapu, J. Oliver and E. Winer,
Path planning of unmanned aerial vehicles using b-splines and particle swarm optimization, Journal of Aerospace Computing Information and Communication, 6 (2009), 271-290.
doi: 10.2514/1.36917. |
[7] |
B. T. Gatzke, W. Kang and H. Zhou, Trajectory optimization for helicopter unmanned aerial vehicles (UAVs), NPS Thesis, (2010). |
[8] |
L. Jennings, K. L. Teo, M. Fisher and C. J. Goh, MISER3 version 2, optimal control software, theory and user manual, Department of Mathematics. The University of Western Australia, Australia, (1997). |
[9] |
T. Ju, S. Liu, J. Yang and D. Sun,
Rapidly exploring random tree algorithm-based path planning for robot-aided optical manipulation of biological cells, IEEE Transactions on Automation Science and Engineering, 11 (2014), 649-657.
|
[10] |
V. Kroumov and J. Yu, 3D path planning for mobile robots using annealing neural network, International journal of innovative computing information and control, 6 (2009). |
[11] |
Y. Liang, J. T. Qi, J. Z. Xiao and Y. Xia, A literature review of UAV 3D path planning, Proceeding of the 11th World Congress on Intelligent Control and Automation, (2014), 2376–2381. |
[12] |
C. Y. Liu, Z. H. Gong, K. L. Teo, J. Sun and L. Caccetta,
Robust multi-objective optimal switching control arising in 1, 3-propanediol microbial fed-batch process, Nonlinear Analysis Hybrid Systems, 25 (2017), 1-20.
doi: 10.1016/j.nahs.2017.01.006. |
[13] |
J. Omer and J. Farges,
Hybridization of nonlinear and mixed-integer linear programming for aircraft separation with trajectory recovery, IEEE Transactions on Intelligent Transportation Systems, 14 (2013), 1218-1230.
|
[14] |
B. Oommen, S. Iyengar, N. Rao and R. Kashyap,
Robot navigation in unknown terrains using learned visibility graphs. Part Ⅰ: The disjoint convex obstacle case, IEEE Journal on Robotics and Automation, 3 (1987), 672-681.
|
[15] |
P. Pharpatara, B. Hriss and Y. Bestaoui,
3-D trajectory planning of aerial vehicles using RRT, IEEE Journal on Robotics and Automation, 25 (2017), 1116-1123.
doi: 10.1109/TCST.2016.2582144. |
[16] |
K. L. Teo, C. J. Goh and K. H. Wong, A unified computational approach for optimal control problems, Pitman Monographs and Surveys in Pure and Applied Mathematics, John Wiley and Sons, Inc., New York, 1991. |
[17] |
J. Votion and Y. Cao,
Diversity-based cooperative multivehicle path planning for risk management in costmap environments, IEEE Transactions on Industrial Electronics, 66 (2019), 6117-6127.
|
[18] |
F. Yang, K. L. Teo, R. Loxton, V. Rehbock, B. Li, C. Yu and L. Jennings,
Visual MISER: An efficient user-friendly visual program for solving optimal control problems, Journal of Industrial and Management Optimization (JIMO), 12 (2016), 781-810.
doi: 10.3934/jimo.2016.12.781. |
[19] |
C. Yu, K. L. Teo, L. Zhang and and Y. Bai,
On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem, Journal of Industrial and Management Optimization (JIMO), 8 (2012), 485-491.
doi: 10.3934/jimo.2012.8.485. |
[20] |
J. Yuan, C. Liu, X. Zhang, J. Xie, E. Feng, H. Yin and Z. Xiu,
Optimal control of a batch fermentation process with nonlinear time-delay and free terminal time and cost sensitivity constraint, Journal of Process Control, 44 (2016), 41-52.
doi: 10.1016/j.jprocont.2016.05.001. |
[21] |
B. Zhao, B. Xian, Y. Zhang and X. Zhang,
Nonlinear robust adaptive tracking control of a quadrotor UAV via immersion and invariance methodology, IEEE Transactions on Industrial Electronics, 62 (2015), 2891-2902.
|
show all references
References:
[1] |
X. Cheng, H. Li and R. Zhang,
Autonomous trajectory planning for space vehicles with a Newton Kantorovich/convex programming approach, Nonlinear Dynamics, 89 (2017), 2795-2814.
doi: 10.1007/s11071-017-3626-7. |
[2] |
K. Daniel, A. Nash, S. Koenig and A. Felner,
Theta*: Any-angle path planning on grids, Journal of Artificial Intelligence Research, 39 (2010), 533-579.
doi: 10.1613/jair.2994. |
[3] |
A. Dehghan and M. Shah,
Binary quadratic programing for online tracking of hundreds of people in extremely crowded scenes, IEEE Transactions on Pattern Analysis and Machine Intelligence, 40 (2018), 568-581.
|
[4] |
H. Ergezer and and K. Leblebiciolu,
3D path planning for multiple UAVs for maximum information collection, Journal of Intelligent and Robotic Systems, 73 (2014), 737-762.
|
[5] |
L. D. Filippis, G. Guglieri and F. Quagliotti,
Path planning strategies for UAVS in 3D environments, Journal of Intelligent and Robotic Systems, 65 (2012), 247-264.
|
[6] |
J. L. Foo, J. Knutzon, V. Kalivarapu, J. Oliver and E. Winer,
Path planning of unmanned aerial vehicles using b-splines and particle swarm optimization, Journal of Aerospace Computing Information and Communication, 6 (2009), 271-290.
doi: 10.2514/1.36917. |
[7] |
B. T. Gatzke, W. Kang and H. Zhou, Trajectory optimization for helicopter unmanned aerial vehicles (UAVs), NPS Thesis, (2010). |
[8] |
L. Jennings, K. L. Teo, M. Fisher and C. J. Goh, MISER3 version 2, optimal control software, theory and user manual, Department of Mathematics. The University of Western Australia, Australia, (1997). |
[9] |
T. Ju, S. Liu, J. Yang and D. Sun,
Rapidly exploring random tree algorithm-based path planning for robot-aided optical manipulation of biological cells, IEEE Transactions on Automation Science and Engineering, 11 (2014), 649-657.
|
[10] |
V. Kroumov and J. Yu, 3D path planning for mobile robots using annealing neural network, International journal of innovative computing information and control, 6 (2009). |
[11] |
Y. Liang, J. T. Qi, J. Z. Xiao and Y. Xia, A literature review of UAV 3D path planning, Proceeding of the 11th World Congress on Intelligent Control and Automation, (2014), 2376–2381. |
[12] |
C. Y. Liu, Z. H. Gong, K. L. Teo, J. Sun and L. Caccetta,
Robust multi-objective optimal switching control arising in 1, 3-propanediol microbial fed-batch process, Nonlinear Analysis Hybrid Systems, 25 (2017), 1-20.
doi: 10.1016/j.nahs.2017.01.006. |
[13] |
J. Omer and J. Farges,
Hybridization of nonlinear and mixed-integer linear programming for aircraft separation with trajectory recovery, IEEE Transactions on Intelligent Transportation Systems, 14 (2013), 1218-1230.
|
[14] |
B. Oommen, S. Iyengar, N. Rao and R. Kashyap,
Robot navigation in unknown terrains using learned visibility graphs. Part Ⅰ: The disjoint convex obstacle case, IEEE Journal on Robotics and Automation, 3 (1987), 672-681.
|
[15] |
P. Pharpatara, B. Hriss and Y. Bestaoui,
3-D trajectory planning of aerial vehicles using RRT, IEEE Journal on Robotics and Automation, 25 (2017), 1116-1123.
doi: 10.1109/TCST.2016.2582144. |
[16] |
K. L. Teo, C. J. Goh and K. H. Wong, A unified computational approach for optimal control problems, Pitman Monographs and Surveys in Pure and Applied Mathematics, John Wiley and Sons, Inc., New York, 1991. |
[17] |
J. Votion and Y. Cao,
Diversity-based cooperative multivehicle path planning for risk management in costmap environments, IEEE Transactions on Industrial Electronics, 66 (2019), 6117-6127.
|
[18] |
F. Yang, K. L. Teo, R. Loxton, V. Rehbock, B. Li, C. Yu and L. Jennings,
Visual MISER: An efficient user-friendly visual program for solving optimal control problems, Journal of Industrial and Management Optimization (JIMO), 12 (2016), 781-810.
doi: 10.3934/jimo.2016.12.781. |
[19] |
C. Yu, K. L. Teo, L. Zhang and and Y. Bai,
On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem, Journal of Industrial and Management Optimization (JIMO), 8 (2012), 485-491.
doi: 10.3934/jimo.2012.8.485. |
[20] |
J. Yuan, C. Liu, X. Zhang, J. Xie, E. Feng, H. Yin and Z. Xiu,
Optimal control of a batch fermentation process with nonlinear time-delay and free terminal time and cost sensitivity constraint, Journal of Process Control, 44 (2016), 41-52.
doi: 10.1016/j.jprocont.2016.05.001. |
[21] |
B. Zhao, B. Xian, Y. Zhang and X. Zhang,
Nonlinear robust adaptive tracking control of a quadrotor UAV via immersion and invariance methodology, IEEE Transactions on Industrial Electronics, 62 (2015), 2891-2902.
|



















Initialization: Set $\varepsilon=\varepsilon_0$, $\gamma=\varepsilon/3$ and $\varepsilon_{min}=10^{-3}\varepsilon_0$. |
Step 1. Solve the Problem $P_{\varepsilon, \gamma}(p)$ for the optimal solution $K_{\varepsilon, \gamma}^{*}$}. |
Step 2. For each $i$, check the feasibility of $g_{i}({\bf x}(t))\ge 0$ with $K_{\varepsilon, \gamma}^{*}$. |
Step 3. If all the constraints in Step 2 are satisfied, then go to the Step 5. |
Otherwise, go to the Step 4. |
Step 4. Set $\gamma=\gamma/2$ and go to Step 1. |
Step 5. Set $\varepsilon=\varepsilon/10$, $\gamma=\gamma/10$, and go to Step 1. |
Stopping criterion: Algorithm 1 stops when $\varepsilon\leq\varepsilon_{min}$. |
Initialization: Set $\varepsilon=\varepsilon_0$, $\gamma=\varepsilon/3$ and $\varepsilon_{min}=10^{-3}\varepsilon_0$. |
Step 1. Solve the Problem $P_{\varepsilon, \gamma}(p)$ for the optimal solution $K_{\varepsilon, \gamma}^{*}$}. |
Step 2. For each $i$, check the feasibility of $g_{i}({\bf x}(t))\ge 0$ with $K_{\varepsilon, \gamma}^{*}$. |
Step 3. If all the constraints in Step 2 are satisfied, then go to the Step 5. |
Otherwise, go to the Step 4. |
Step 4. Set $\gamma=\gamma/2$ and go to Step 1. |
Step 5. Set $\varepsilon=\varepsilon/10$, $\gamma=\gamma/10$, and go to Step 1. |
Stopping criterion: Algorithm 1 stops when $\varepsilon\leq\varepsilon_{min}$. |
$L$ | $0.2\ m$ | $M$ | $1.5\ kg$ | $g$ | $9.8\ m/ s^{2}$ |
${I}_{x}$ | $0.0075\ kg\cdot m^2$ | ${I}_{y}$ | $0.0075\ kg\cdot m^2$ | ${I}_{z}$ | $0.013\ kg\cdot m^2$ |
${K}_{1}, {K}_{2}$ | $0.06\ N/m/s$ | ${K}_{3}$ | $0.09\ N/m/s$ | ${K}_{4}, {K}_{5}$ | $0.002\ N/m/s$ |
${K}_{6}$ | $0.1\ N/m/s$ | $C$ | $10^{-7}$ | ${K}_{v}$ | $1.5\times10^{-5}\ N/m/s$ |
$L$ | $0.2\ m$ | $M$ | $1.5\ kg$ | $g$ | $9.8\ m/ s^{2}$ |
${I}_{x}$ | $0.0075\ kg\cdot m^2$ | ${I}_{y}$ | $0.0075\ kg\cdot m^2$ | ${I}_{z}$ | $0.013\ kg\cdot m^2$ |
${K}_{1}, {K}_{2}$ | $0.06\ N/m/s$ | ${K}_{3}$ | $0.09\ N/m/s$ | ${K}_{4}, {K}_{5}$ | $0.002\ N/m/s$ |
${K}_{6}$ | $0.1\ N/m/s$ | $C$ | $10^{-7}$ | ${K}_{v}$ | $1.5\times10^{-5}\ N/m/s$ |
[1] |
Ryan Loxton, Qun Lin, Volker Rehbock, Kok Lay Teo. Control parameterization for optimal control problems with continuous inequality constraints: New convergence results. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 571-599. doi: 10.3934/naco.2012.2.571 |
[2] |
Yi Gao, Rui Li, Yingjing Shi, Li Xiao. Design of path planning and tracking control of quadrotor. Journal of Industrial and Management Optimization, 2022, 18 (3) : 2221-2235. doi: 10.3934/jimo.2021063 |
[3] |
Canghua Jiang, Zhiqiang Guo, Xin Li, Hai Wang, Ming Yu. An efficient adjoint computational method based on lifted IRK integrator and exact penalty function for optimal control problems involving continuous inequality constraints. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1845-1865. doi: 10.3934/dcdss.2020109 |
[4] |
M. Alipour, M. A. Vali, A. H. Borzabadi. A hybrid parametrization approach for a class of nonlinear optimal control problems. Numerical Algebra, Control and Optimization, 2019, 9 (4) : 493-506. doi: 10.3934/naco.2019037 |
[5] |
Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial and Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082 |
[6] |
Changjun Yu, Shuxuan Su, Yanqin Bai. On the optimal control problems with characteristic time control constraints. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1305-1320. doi: 10.3934/jimo.2021021 |
[7] |
Piermarco Cannarsa, Hélène Frankowska, Elsa M. Marchini. On Bolza optimal control problems with constraints. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 629-653. doi: 10.3934/dcdsb.2009.11.629 |
[8] |
M. H. Shavakh, B. Bidabad. Time-optimal of fixed wing UAV aircraft with input and output constraints. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021023 |
[9] |
Bin Li, Xiaolong Guo, Xiaodong Zeng, Songyi Dian, Minhua Guo. An optimal pid tuning method for a single-link manipulator based on the control parametrization technique. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1813-1823. doi: 10.3934/dcdss.2020107 |
[10] |
IvÁn Area, FaÏÇal NdaÏrou, Juan J. Nieto, Cristiana J. Silva, Delfim F. M. Torres. Ebola model and optimal control with vaccination constraints. Journal of Industrial and Management Optimization, 2018, 14 (2) : 427-446. doi: 10.3934/jimo.2017054 |
[11] |
Eduardo Casas, Fredi Tröltzsch. Sparse optimal control for the heat equation with mixed control-state constraints. Mathematical Control and Related Fields, 2020, 10 (3) : 471-491. doi: 10.3934/mcrf.2020007 |
[12] |
Claus Kirchner, Michael Herty, Simone Göttlich, Axel Klar. Optimal control for continuous supply network models. Networks and Heterogeneous Media, 2006, 1 (4) : 675-688. doi: 10.3934/nhm.2006.1.675 |
[13] |
Stanisław Migórski. A note on optimal control problem for a hemivariational inequality modeling fluid flow. Conference Publications, 2013, 2013 (special) : 545-554. doi: 10.3934/proc.2013.2013.545 |
[14] |
Martin Brokate, Pavel Krejčí. Optimal control of ODE systems involving a rate independent variational inequality. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 331-348. doi: 10.3934/dcdsb.2013.18.331 |
[15] |
Changjie Fang, Weimin Han. Stability analysis and optimal control of a stationary Stokes hemivariational inequality. Evolution Equations and Control Theory, 2020, 9 (4) : 995-1008. doi: 10.3934/eect.2020046 |
[16] |
Leszek Gasiński. Optimal control problem of Bolza-type for evolution hemivariational inequality. Conference Publications, 2003, 2003 (Special) : 320-326. doi: 10.3934/proc.2003.2003.320 |
[17] |
Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. Parametrization of the attainable set for a nonlinear control model of a biochemical process. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1067-1094. doi: 10.3934/mbe.2013.10.1067 |
[18] |
Alexander Tyatyushkin, Tatiana Zarodnyuk. Numerical method for solving optimal control problems with phase constraints. Numerical Algebra, Control and Optimization, 2017, 7 (4) : 481-492. doi: 10.3934/naco.2017030 |
[19] |
Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control and Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022 |
[20] |
Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553 |
2020 Impact Factor: 1.801
Tools
Article outline
Figures and Tables
[Back to Top]