• Previous Article
    A Primal-dual algorithm for unfolding neutron energy spectrum from multiple activation foils
  • JIMO Home
  • This Issue
  • Next Article
    Order allocation model in logistics service supply chain with demand updating and inequity aversion: A perspective of two option contracts comparison
doi: 10.3934/jimo.2021013

Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming

Department of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran

* Corresponding author

Received  May 2020 Revised  October 2020 Published  December 2020

In recent years, numerous studies have been conducted regarding inventory control of deteriorating items. However, due to the complexity of the solution methods, various real assumptions such as discrete variables and capacity constraints were neglected. In this study, we presented a multi-item inventory model for deteriorating items with limited carrier capacity. The proposed research considered the carrier, which transports the order has limited capacity and the quantity of orders cannot be infinite. Dynamic programming is used for problem optimization. The results show that the proposed solution method can solve the mixed-integer problem, and it can provide the global optimum solution.

Citation: Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021013
References:
[1]

R. Bellman, Dynamic Programming, Science, 153 (1966), 34-37.   Google Scholar

[2]

D. ChakrabortyD. K. Jana and T. K. Roy, Multi-warehouse partial backlogging inventory system with inflation for non-instantaneous deteriorating multi-item under imprecise environment, Soft Computing, 24 (2020), 14471-14490.  doi: 10.1007/s00500-020-04800-3.  Google Scholar

[3]

C.-Y. DyeL.-Y. Ouyang and T.-P. Hsieh, Deterministic inventory model for deteriorating items with capacity constraint and time-proportional backlogging rate, European J. Oper. Res., 178 (2007), 789-807.  doi: 10.1016/j.ejor.2006.02.024.  Google Scholar

[4]

S. K. GhoshT. Sarkar and K. Chaudhuri, A multi-item inventory model for deteriorating items in limited storage space with stock-dependent demand, American Journal of Mathematical and Management Sciences, 34 (2015), 147-161.  doi: 10.1080/01966324.2014.980870.  Google Scholar

[5]

S. K. Goyal and B. C. Giri, Recent trends in modeling of deteriorating inventory, European J. Oper. Res., 134 (2001), 1-16.  doi: 10.1016/S0377-2217(00)00248-4.  Google Scholar

[6]

M. KarimiS. J. Sadjadi and A. G. Bijaghini, An economic order quantity for deteriorating items with allowable rework of deteriorated products, J. Ind. Manag. Optim., 15 (2019), 1857-1879.  doi: 10.3934/jimo.2018126.  Google Scholar

[7]

G. LiX. HeJ. Zhou and H. Wu, Pricing, replenishment and preservation technology investment decisions for non-instantaneous deteriorating items, Omega, 84 (2019), 114-126.  doi: 10.1016/j.omega.2018.05.001.  Google Scholar

[8]

J.-J. Liao, K.-N. Huang, K.-J. Chung, S.-D. Lin, S.-T. Chuang and H. M. Srivastava, Optimal ordering policy in an economic order quantity (EOQ) model for non-instantaneous deteriorating items with defective quality and permissible delay in payments, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 114 (2020), Paper No. 41, 26 pp. doi: 10.1007/s13398-019-00777-3.  Google Scholar

[9]

P. MahataG. C. Mahata and S. K. De, An economic order quantity model under two-level partial trade credit for time varying deteriorating items, International Journal of Systems Science: Operations and Logistics, 7 (2020), 1-17.  doi: 10.1080/23302674.2018.1473526.  Google Scholar

[10]

A. K. Malik and A. Sharma, An inventory model for deteriorating items with multi-variate demand and partial backlogging under inflation, International Journal of Mathematical Sciences, 10 (2011), 315-321.   Google Scholar

[11]

M. Rezagholifam, S. J. Sadjadi, M. Heydari and M. Karimi, Optimal pricing and ordering strategy for non-instantaneous deteriorating items with price and stock sensitive demand and capacity constraint, International Journal of Systems Science: Operations and Logistics, (2020). doi: 10.1080/23302674.2020.1833259.  Google Scholar

[12]

G. P. Samanta and A. Roy, A production inventory model with deteriorating items and shortages, Yugosl. J. Oper. Res., 14 (2004), 219-230.  doi: 10.2298/YJOR0402219S.  Google Scholar

[13]

S. SanaS. K. Goyal and K. S. Chaudhuri, A production-inventory model for a deteriorating item with trended demand and shortages, European J. Oper. Res., 157 (2004), 357-371.  doi: 10.1016/S0377-2217(03)00222-4.  Google Scholar

[14]

N. H. ShahU. Chaudhari and L. E. Cárdenas-Barrón, Integrating credit and replenishment policies for deteriorating items under quadratic demand in a three echelon supply chain, International Journal of Systems Science: Operations and Logistics, 7 (2020), 34-45.   Google Scholar

[15]

N. H. Shah and M. K. Naik, Inventory policies for deteriorating items with time-price backlog dependent demand, International Journal of Systems Science: Operations and Logistics, 7 (2020), 76-89.  doi: 10.1080/23302674.2018.1506062.  Google Scholar

[16]

J.-T. TengL. E. Cárdenas-BarrónH.-J. ChangJ. Wu and Y. Hu, Inventory lot-size policies for deteriorating items with expiration dates and advance payments, Appl. Math. Model., 40 (2016), 8605-8616.  doi: 10.1016/j.apm.2016.05.022.  Google Scholar

[17]

S. TiwariL. E. Cárdenas-BarrónM. Goh and A. A. Shaikh, Joint pricing and inventory model for deteriorating items with expiration dates and partial backlogging under two-level partial trade credits in supply chain, International Journal of Production Economics, 200 (2018), 16-36.  doi: 10.1016/j.ijpe.2018.03.006.  Google Scholar

[18]

S. TiwariL. E. Cárdenas-BarrónA. Khanna and C. K. Jaggi, Impact of trade credit and inflation on retailer's ordering policies for non-instantaneous deteriorating items in a two-warehouse environment, International Journal of Production Economics, 176 (2016), 154-169.  doi: 10.1016/j.ijpe.2016.03.016.  Google Scholar

[19]

Q. WangJ. WuN. Zhao and Q. Zhu, Inventory control and supply chain management: A green growth perspective, Resources, Conservation and Recycling, 145 (2019), 78-85.  doi: 10.1016/j.resconrec.2019.02.024.  Google Scholar

[20]

J. WuF. B. Al-KhateebJ.-T. Teng and L. E. Cárdenas-Barrón, Inventory models for deteriorating items with maximum lifetime under downstream partial trade credits to credit-risk customers by discounted cash-flow analysis, International Journal of Production Economics, 171 (2016), 105-115.  doi: 10.1016/j.ijpe.2015.10.020.  Google Scholar

[21]

J. WuL.-Y. OuyangL. E. Cárdenas-Barrón and S. K. Goyal, Optimal credit period and lot size for deteriorating items with expiration dates under two-level trade credit financing, European Journal of Operational Research, 237 (2014), 898-908.  doi: 10.1016/j.ejor.2014.03.009.  Google Scholar

[22]

J. ZhangG. LiuQ. Zhang and Z. Bai, Coordinating a supply chain for deteriorating items with a revenue sharing and cooperative investment contract, Omega, 56 (2015), 37-49.  doi: 10.1016/j.omega.2015.03.004.  Google Scholar

show all references

References:
[1]

R. Bellman, Dynamic Programming, Science, 153 (1966), 34-37.   Google Scholar

[2]

D. ChakrabortyD. K. Jana and T. K. Roy, Multi-warehouse partial backlogging inventory system with inflation for non-instantaneous deteriorating multi-item under imprecise environment, Soft Computing, 24 (2020), 14471-14490.  doi: 10.1007/s00500-020-04800-3.  Google Scholar

[3]

C.-Y. DyeL.-Y. Ouyang and T.-P. Hsieh, Deterministic inventory model for deteriorating items with capacity constraint and time-proportional backlogging rate, European J. Oper. Res., 178 (2007), 789-807.  doi: 10.1016/j.ejor.2006.02.024.  Google Scholar

[4]

S. K. GhoshT. Sarkar and K. Chaudhuri, A multi-item inventory model for deteriorating items in limited storage space with stock-dependent demand, American Journal of Mathematical and Management Sciences, 34 (2015), 147-161.  doi: 10.1080/01966324.2014.980870.  Google Scholar

[5]

S. K. Goyal and B. C. Giri, Recent trends in modeling of deteriorating inventory, European J. Oper. Res., 134 (2001), 1-16.  doi: 10.1016/S0377-2217(00)00248-4.  Google Scholar

[6]

M. KarimiS. J. Sadjadi and A. G. Bijaghini, An economic order quantity for deteriorating items with allowable rework of deteriorated products, J. Ind. Manag. Optim., 15 (2019), 1857-1879.  doi: 10.3934/jimo.2018126.  Google Scholar

[7]

G. LiX. HeJ. Zhou and H. Wu, Pricing, replenishment and preservation technology investment decisions for non-instantaneous deteriorating items, Omega, 84 (2019), 114-126.  doi: 10.1016/j.omega.2018.05.001.  Google Scholar

[8]

J.-J. Liao, K.-N. Huang, K.-J. Chung, S.-D. Lin, S.-T. Chuang and H. M. Srivastava, Optimal ordering policy in an economic order quantity (EOQ) model for non-instantaneous deteriorating items with defective quality and permissible delay in payments, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 114 (2020), Paper No. 41, 26 pp. doi: 10.1007/s13398-019-00777-3.  Google Scholar

[9]

P. MahataG. C. Mahata and S. K. De, An economic order quantity model under two-level partial trade credit for time varying deteriorating items, International Journal of Systems Science: Operations and Logistics, 7 (2020), 1-17.  doi: 10.1080/23302674.2018.1473526.  Google Scholar

[10]

A. K. Malik and A. Sharma, An inventory model for deteriorating items with multi-variate demand and partial backlogging under inflation, International Journal of Mathematical Sciences, 10 (2011), 315-321.   Google Scholar

[11]

M. Rezagholifam, S. J. Sadjadi, M. Heydari and M. Karimi, Optimal pricing and ordering strategy for non-instantaneous deteriorating items with price and stock sensitive demand and capacity constraint, International Journal of Systems Science: Operations and Logistics, (2020). doi: 10.1080/23302674.2020.1833259.  Google Scholar

[12]

G. P. Samanta and A. Roy, A production inventory model with deteriorating items and shortages, Yugosl. J. Oper. Res., 14 (2004), 219-230.  doi: 10.2298/YJOR0402219S.  Google Scholar

[13]

S. SanaS. K. Goyal and K. S. Chaudhuri, A production-inventory model for a deteriorating item with trended demand and shortages, European J. Oper. Res., 157 (2004), 357-371.  doi: 10.1016/S0377-2217(03)00222-4.  Google Scholar

[14]

N. H. ShahU. Chaudhari and L. E. Cárdenas-Barrón, Integrating credit and replenishment policies for deteriorating items under quadratic demand in a three echelon supply chain, International Journal of Systems Science: Operations and Logistics, 7 (2020), 34-45.   Google Scholar

[15]

N. H. Shah and M. K. Naik, Inventory policies for deteriorating items with time-price backlog dependent demand, International Journal of Systems Science: Operations and Logistics, 7 (2020), 76-89.  doi: 10.1080/23302674.2018.1506062.  Google Scholar

[16]

J.-T. TengL. E. Cárdenas-BarrónH.-J. ChangJ. Wu and Y. Hu, Inventory lot-size policies for deteriorating items with expiration dates and advance payments, Appl. Math. Model., 40 (2016), 8605-8616.  doi: 10.1016/j.apm.2016.05.022.  Google Scholar

[17]

S. TiwariL. E. Cárdenas-BarrónM. Goh and A. A. Shaikh, Joint pricing and inventory model for deteriorating items with expiration dates and partial backlogging under two-level partial trade credits in supply chain, International Journal of Production Economics, 200 (2018), 16-36.  doi: 10.1016/j.ijpe.2018.03.006.  Google Scholar

[18]

S. TiwariL. E. Cárdenas-BarrónA. Khanna and C. K. Jaggi, Impact of trade credit and inflation on retailer's ordering policies for non-instantaneous deteriorating items in a two-warehouse environment, International Journal of Production Economics, 176 (2016), 154-169.  doi: 10.1016/j.ijpe.2016.03.016.  Google Scholar

[19]

Q. WangJ. WuN. Zhao and Q. Zhu, Inventory control and supply chain management: A green growth perspective, Resources, Conservation and Recycling, 145 (2019), 78-85.  doi: 10.1016/j.resconrec.2019.02.024.  Google Scholar

[20]

J. WuF. B. Al-KhateebJ.-T. Teng and L. E. Cárdenas-Barrón, Inventory models for deteriorating items with maximum lifetime under downstream partial trade credits to credit-risk customers by discounted cash-flow analysis, International Journal of Production Economics, 171 (2016), 105-115.  doi: 10.1016/j.ijpe.2015.10.020.  Google Scholar

[21]

J. WuL.-Y. OuyangL. E. Cárdenas-Barrón and S. K. Goyal, Optimal credit period and lot size for deteriorating items with expiration dates under two-level trade credit financing, European Journal of Operational Research, 237 (2014), 898-908.  doi: 10.1016/j.ejor.2014.03.009.  Google Scholar

[22]

J. ZhangG. LiuQ. Zhang and Z. Bai, Coordinating a supply chain for deteriorating items with a revenue sharing and cooperative investment contract, Omega, 56 (2015), 37-49.  doi: 10.1016/j.omega.2015.03.004.  Google Scholar

Figure 1.  Inventory level of each item vs. time
Figure 2.  The flowchart of the proposed solution method
Figure 3.  The inventory level of each item over time
Table 1.  A. Review of previous works
Paper Multi Demand Constraints Variables Solution Shortages
Item Function type method
[7] No Constant Logical Continuous Soft Allowed
constraints computing
[2] Yes Stock- Capacity Continuous Soft Allowed
dependent constraint computing
[8] No Constant No Continuous Mathematical Not
derivation allowed
[15] No Time- Logical Continuous Soft Not
dependent constraints computing allowed
[9] No Trade No Continuous Soft Not
credit- computing allowed
dependent
[14] No Time-price No Continuous Mathematical Allowed
backlog derivation
dependent
[6] No Time- No Continuous Mathematical Allowed
dependent derivation
[11] No Stock and Capacity Continuous Mathematical Not
price constraint derivation allowed
dependent
This Yes Time Capacity Discrete and Dynamic Allowed
Paper -dependent constraint continuous Programming
Paper Multi Demand Constraints Variables Solution Shortages
Item Function type method
[7] No Constant Logical Continuous Soft Allowed
constraints computing
[2] Yes Stock- Capacity Continuous Soft Allowed
dependent constraint computing
[8] No Constant No Continuous Mathematical Not
derivation allowed
[15] No Time- Logical Continuous Soft Not
dependent constraints computing allowed
[9] No Trade No Continuous Soft Not
credit- computing allowed
dependent
[14] No Time-price No Continuous Mathematical Allowed
backlog derivation
dependent
[6] No Time- No Continuous Mathematical Allowed
dependent derivation
[11] No Stock and Capacity Continuous Mathematical Not
price constraint derivation allowed
dependent
This Yes Time Capacity Discrete and Dynamic Allowed
Paper -dependent constraint continuous Programming
Table 2.  The required and remaining space for each action in the stage 1
$ k^{'}_{1} $ 0 1 2 3 4 5
$ k_{1} $ 0 110.7 221.7 330.7 435.4 533.5
$ k_{1}v_{1} $ 0 166.05 332.55 496.05 653.1 800.25
$ j_{1} $ 800 633.95 467.45 303.95 146.9 -0.25
(infeasible)
$ k^{'}_{1} $ 0 1 2 3 4 5
$ k_{1} $ 0 110.7 221.7 330.7 435.4 533.5
$ k_{1}v_{1} $ 0 166.05 332.55 496.05 653.1 800.25
$ j_{1} $ 800 633.95 467.45 303.95 146.9 -0.25
(infeasible)
Table 3.  Different values of the state in the stage 1
$ i_{1} $ $ 0\leq i_{1} $ $ 166.05\leq i_{1} $ $ 332.555\leq i_{1} $ $ 496.05\leq i_{1} $ $ 653.1\leq i_{1} $
$<166.05 $ $<332.55 $ $<496.05 $ $<653.1 $ $ \leq800 $
$ i^{'}_{1} $ {0} {0, 1} {0, 1, 2} {0, 1, 2, 3} {0, 1, 2, 3, 4}
$ i_{1} $ $ 0\leq i_{1} $ $ 166.05\leq i_{1} $ $ 332.555\leq i_{1} $ $ 496.05\leq i_{1} $ $ 653.1\leq i_{1} $
$<166.05 $ $<332.55 $ $<496.05 $ $<653.1 $ $ \leq800 $
$ i^{'}_{1} $ {0} {0, 1} {0, 1, 2} {0, 1, 2, 3} {0, 1, 2, 3, 4}
Table 4.  The required space for each action in the stage 2
$ k^{'}_{2} $ 0 1 2 3 4 5
$ k_{2} $ 0 36.9 77.5 127.1 200.4 338.3
$ k_{2}v_{1} $ 0 73.8 155 254.2 400.8 676.6
$ j_{2} $ 800 726.2 645 545.8 399.8 123.4
$ k^{'}_{2} $ 0 1 2 3 4 5
$ k_{2} $ 0 36.9 77.5 127.1 200.4 338.3
$ k_{2}v_{1} $ 0 73.8 155 254.2 400.8 676.6
$ j_{2} $ 800 726.2 645 545.8 399.8 123.4
Table 5.  Different values of the state in the stage n = 2
$ i_{2} $ $ 0\leq i_{2} $ $ 73.8\leq i_{2} $ $ 155\leq i_{2} $ $ 166.05\leq i_{2} $ $ 240.3\leq i_{2} $
$<73.8 $ $<155 $ $<166.05 $ $<240.3 $ $<254.2 $
$ i^{'}_2 $ {0} {0, 1} {0, 1, 2} {0, 1, 2} {0, 1, 2}
$ i_{2} $ $ 254.2\leq i_{2} $ $ 321.5\leq i_{2} $ $ 332.55\leq i_{2} $ $ 400.8\leq i_{2} $ $ 406.3\leq i_{2} $
$<321.5 $ $<332.55 $ $<400.8 $ $<406.3 $ $<420.7 $
$ i^{'}_2 $ {0, 1, 2, 3} {0, 1, 2, 3} {0, 1, 2, 3} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
$ i_{2} $ $ 420.7\leq i_{2} $ $ 487.5\leq i_{2} $ $ 496.05\leq i_{2} $ $ 567.3\leq i_{2} $ $ 569.7\leq i_{2} $
$<487.5 $ $<496.05 $ $<567.3 $ $<569.7 $ $<586.7 $
$ i^{'}_2 $ {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
$ i_{2} $ $ 586.7\leq i_{2} $ $ 650.9\leq i_{2} $ $ 653.1\leq i_{2} $ $ 676.6\leq i_{2} $ $ 726.9\leq i_{2} $
$<650.9 $ $<653.1 $ $<676.6 $ $<726.9 $ $<733.3 $
$ i^{'}_2 $ {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, ..., 5} {0, 1, ..., 5}
$ i_{2} $} $ 733.3\leq i_{2} $ $ 750.1\leq i_{2} $
$<750.1 $ $ \leq800 $
$ i^{'}_2 $ {0, 1, ..., 5} {0, 1, ..., 5}
$ i_{2} $ $ 0\leq i_{2} $ $ 73.8\leq i_{2} $ $ 155\leq i_{2} $ $ 166.05\leq i_{2} $ $ 240.3\leq i_{2} $
$<73.8 $ $<155 $ $<166.05 $ $<240.3 $ $<254.2 $
$ i^{'}_2 $ {0} {0, 1} {0, 1, 2} {0, 1, 2} {0, 1, 2}
$ i_{2} $ $ 254.2\leq i_{2} $ $ 321.5\leq i_{2} $ $ 332.55\leq i_{2} $ $ 400.8\leq i_{2} $ $ 406.3\leq i_{2} $
$<321.5 $ $<332.55 $ $<400.8 $ $<406.3 $ $<420.7 $
$ i^{'}_2 $ {0, 1, 2, 3} {0, 1, 2, 3} {0, 1, 2, 3} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
$ i_{2} $ $ 420.7\leq i_{2} $ $ 487.5\leq i_{2} $ $ 496.05\leq i_{2} $ $ 567.3\leq i_{2} $ $ 569.7\leq i_{2} $
$<487.5 $ $<496.05 $ $<567.3 $ $<569.7 $ $<586.7 $
$ i^{'}_2 $ {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
$ i_{2} $ $ 586.7\leq i_{2} $ $ 650.9\leq i_{2} $ $ 653.1\leq i_{2} $ $ 676.6\leq i_{2} $ $ 726.9\leq i_{2} $
$<650.9 $ $<653.1 $ $<676.6 $ $<726.9 $ $<733.3 $
$ i^{'}_2 $ {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {0, 1, ..., 5} {0, 1, ..., 5}
$ i_{2} $} $ 733.3\leq i_{2} $ $ 750.1\leq i_{2} $
$<750.1 $ $ \leq800 $
$ i^{'}_2 $ {0, 1, ..., 5} {0, 1, ..., 5}
Table 6.  The recursive function in the second stage
$ i_{2} $ $ 0\leq i_{2} $
$<73.8 $
$ 73.8\leq i_{2} $
$<155 $
$ 155\leq i_{2} $
$<166.05 $
$ 166.05\leq i_{2} $
$<240.3 $
$ 240.3\leq i_{2} $
$<254.2 $
$ f(2, i_{2}) $ 24404 24262 24132 23991 23849
$ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $
:0 :0 :0 :1 :0 :2 :1 :0 :1 :1
$ i_{2} $ $ 254.2\leq i_{2} $ $ 321.5\leq i_{2} $ $ 332.55\leq i_{2} $ $ 400.8\leq i_{2} $ $ 406.3\leq i_{2} $
$<321.5 $ $<332.55 $ $<400.8 $ $<406.3 $ $<420.7 $
$ f(2, i_{2}) $ 23849 23719 23651 23651 23509
$ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $
:1 :1 :1 :2 :2 :0 :2 :0 :2 :1
$ i_{2} $ $ 420.7\leq i_{2} $ $ 487.5\leq i_{2} $ $ 496.05\leq i_{2} $ $ 567.3\leq i_{2} $ $ 596.7\leq i_{2} $
$<487.5 $ $<496.05 $ $<567.3 $ $<569.7 $ $<586.7 $
$ f(2, i_{2}) $ 23509 23379 23379 23379 23258
$ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $
:2 :1 :2 :2 :2 :2 :2 :2 :3 :1
$ i_{2} $ $ 586.7\leq i_{2} $ $ 650.9\leq i_{2} $ $ 653.1\leq i_{2} $ $ 676.6\leq i_{2} $ $ 726.9\leq i_{2} $
$<650.9 $ $<653.1 $ $<676.6 $ $<726.9 $ $<733.3 $
$ f(2, i_{2}) $ 23256 23128 23128 23128 23127
$ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $
:2 :3 :3 :2 :3 :2 :3 :2 :4 :1
$ i_{2} $ $ 733.3\leq i_{2} $ $ 750.1\leq i_{2} $
$<750.1 $ $ \leq800 $
$ f(2, i_{2}) $ 23127 23005
$ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $
:4 :1 :3 :3
$ i_{2} $ $ 0\leq i_{2} $
$<73.8 $
$ 73.8\leq i_{2} $
$<155 $
$ 155\leq i_{2} $
$<166.05 $
$ 166.05\leq i_{2} $
$<240.3 $
$ 240.3\leq i_{2} $
$<254.2 $
$ f(2, i_{2}) $ 24404 24262 24132 23991 23849
$ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $
:0 :0 :0 :1 :0 :2 :1 :0 :1 :1
$ i_{2} $ $ 254.2\leq i_{2} $ $ 321.5\leq i_{2} $ $ 332.55\leq i_{2} $ $ 400.8\leq i_{2} $ $ 406.3\leq i_{2} $
$<321.5 $ $<332.55 $ $<400.8 $ $<406.3 $ $<420.7 $
$ f(2, i_{2}) $ 23849 23719 23651 23651 23509
$ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $
:1 :1 :1 :2 :2 :0 :2 :0 :2 :1
$ i_{2} $ $ 420.7\leq i_{2} $ $ 487.5\leq i_{2} $ $ 496.05\leq i_{2} $ $ 567.3\leq i_{2} $ $ 596.7\leq i_{2} $
$<487.5 $ $<496.05 $ $<567.3 $ $<569.7 $ $<586.7 $
$ f(2, i_{2}) $ 23509 23379 23379 23379 23258
$ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $
:2 :1 :2 :2 :2 :2 :2 :2 :3 :1
$ i_{2} $ $ 586.7\leq i_{2} $ $ 650.9\leq i_{2} $ $ 653.1\leq i_{2} $ $ 676.6\leq i_{2} $ $ 726.9\leq i_{2} $
$<650.9 $ $<653.1 $ $<676.6 $ $<726.9 $ $<733.3 $
$ f(2, i_{2}) $ 23256 23128 23128 23128 23127
$ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $
:2 :3 :3 :2 :3 :2 :3 :2 :4 :1
$ i_{2} $ $ 733.3\leq i_{2} $ $ 750.1\leq i_{2} $
$<750.1 $ $ \leq800 $
$ f(2, i_{2}) $ 23127 23005
$ k^{'*}_1 $ $ k^{'*}_2 $ $ k^{'*}_1 $ $ k^{'*}_2 $
:4 :1 :3 :3
Table 7.  The required and remaining space for each action in stage n = 3
$ k^{'}_{3} $ 0 1 2 3 4 5
$ k_{3} $ 0 152.4 315.9 523.2 863.8 1517.5
$ k_{3}v_{3} $ 0 152.4 315.9 523.2 863.8 1517.5
$ j_{3} $ 800 647.6 484.1 276.8 -63.8 -717.5
(infeasible) (infeasible)
$ k^{'}_{3} $ 0 1 2 3 4 5
$ k_{3} $ 0 152.4 315.9 523.2 863.8 1517.5
$ k_{3}v_{3} $ 0 152.4 315.9 523.2 863.8 1517.5
$ j_{3} $ 800 647.6 484.1 276.8 -63.8 -717.5
(infeasible) (infeasible)
[1]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[2]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[3]

Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021037

[4]

Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983

[5]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[6]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[7]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[8]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[9]

Gaurav Nagpal, Udayan Chanda, Nitant Upasani. Inventory replenishment policies for two successive generations price-sensitive technology products. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021036

[10]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[11]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[12]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[13]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[14]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[15]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[16]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[17]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[18]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[19]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[20]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (14)
  • HTML views (72)
  • Cited by (0)

Other articles
by authors

[Back to Top]