[1]
|
S. Bojari and M. R. Eslahchi, Global convergence of a family of modified BFGS methods under a modified weak Wolfe-Powell line search for nonconvex functions, 4OR, 18 (2020), 219-244.
doi: 10.1007/s10288-019-00412-2.
|
[2]
|
R. H. Byrd and J. Nocedal, A tool for the analysis of quasi-Newton methods with application to unconstrained minimization, SIAM J. Numer. Anal., 26 (1989), 727-739.
doi: 10.1137/0726042.
|
[3]
|
H. Cao and D. Li, Adjoint Broyden methods for symmetric nonlinear equations, Pac. J. Optim., 13 (2017), 645-663.
|
[4]
|
J. E. Dennis and J. J. Moré, A characterization of superlinear convergence and its applications to quasi-Newton methods, Math. Comput., 28 (1974), 549-560.
doi: 10.1090/S0025-5718-1974-0343581-1.
|
[5]
|
Y.-H. Dai, Convergence properties of the BFGS algorithm, SIAM J. Optim., 13 (2002), 693-701.
doi: 10.1137/S1052623401383455.
|
[6]
|
G. Gu, D. Li, L. Qi and S. Zhou, Descent directions of quasi-Newton method for symmetric nonlinear equations, SIAM J. Numer. Anal., 40 (2002), 1763-1774.
doi: 10.1137/S0036142901397423.
|
[7]
|
D. Li and M. Fukushima, A globally and superlinearly convergent Gauss-Newton-based BFGS method for symmetric nonlinear equations, SIAM J. Numer. Anal., 37 (1999), 152-172.
doi: 10.1137/S0036142998335704.
|
[8]
|
D. Li and M. Fukushima, A modified BFGS method and its global convergence in nonconvex minimization, J. Comput. Appl. Math., 129 (2001), 15-35.
doi: 10.1016/S0377-0427(00)00540-9.
|
[9]
|
D. Li and M. Fukushima, On the global convergence of the BFGS method for nonconvex unconstrained optimization problems, SIAM J. Optim., 11 (2001), 1054-1064.
doi: 10.1137/S1052623499354242.
|
[10]
|
W. F. Mascarenhas, The BFGS method with exact line searches fails for nonconvex objective functions, Math. Program., 99 (2004), 49-61.
doi: 10.1007/s10107-003-0421-7.
|
[11]
|
W. Sun and Y. Yuan, Optimization Theory and Methods, Springer Science and Business Media, LLC, New York, 2006.
|
[12]
|
Z. Wang, Y. Chen, S. Huang and D. Feng, A modified nonmonotone BFGS algorithm for solving smooth nonlinear equations, Optim. Lett., 8 (2014), 1845-1860.
doi: 10.1007/s11590-013-0678-6.
|
[13]
|
Z. Wan, K. Teo, X. Chen and C. Hu, New BFGS method for unconstrained optimization problem based on modified Armijo line search, Optimization, 63 (2014), 285-304.
doi: 10.1080/02331934.2011.644284.
|
[14]
|
G. Yuan and X. Lu, A new backtracking inexact BFGS method for symmetric nonlinear equations, Comput. Math. Appl., 55 (2008), 116-129.
doi: 10.1016/j.camwa.2006.12.081.
|
[15]
|
G. Yuan, Z. Sheng, B. Wang, W. Hu and C. Li, The global convergence of a modified BFGS method for nonconvex functions, J. Comput. Appl. Math., 327 (2018), 274-294.
doi: 10.1016/j.cam.2017.05.030.
|
[16]
|
G. Yuan, Z. Wei and X. Lu, Global convergence of BFGS and PRP methods under a modified weak Wolfe-Powell line search, Appl. Math. Model., 47 (2017), 811-825.
doi: 10.1016/j.apm.2017.02.008.
|
[17]
|
G. Yuan and S. Yao, A BFGS algorithm for solving symmetric nonlinear equations, Optimization, 62 (2013), 85-99.
doi: 10.1080/02331934.2011.564621.
|
[18]
|
L. Zhang, A derivative-free conjugate residual method using secant condition for general large-scale nonlinear equations, Numer. Algo., 83 (2020), 1277-1293.
doi: 10.1007/s11075-019-00725-7.
|
[19]
|
L. Zhang and H. Tang, A hybrid MBFGS and CBFGS method for nonconvex minimization with a global complexity bound, Pac. J. Optim., 14 (2018), 693-702.
|
[20]
|
W. Zhou, A Gauss-Newton-based BFGS method for symmetric nonlinear least squares problems, Pac. J. Optim., 9 (2013), 373-389.
|
[21]
|
W. Zhou, A modified BFGS type quasi-Newton method with line search for symmetric nonlinear equations problems, J. Comput. Appl. Math., 367 (2020), 112454, 8 pp.
doi: 10.1016/j.cam.2019.112454.
|
[22]
|
W. Zhou and X. Chen, Global convergence of a new hybrid Gauss-Newton structured BFGS methods for nonlinear least squares problems, SIAM J. Optim., 20 (2010), 2422-2441.
doi: 10.1137/090748470.
|
[23]
|
W. Zhou and D. Li, On the Q-linear convergence rate of a class of methods for monotone nonlinear equations, Pac. J. Optim., 14 (2018), 723-737.
|
[24]
|
W. Zhou and D. Shen, Convergence properties of an iterative method for solving symmetric nonlinear equations, J. Optim. Theory Appl., 164 (2015), 277-289.
doi: 10.1007/s10957-014-0547-1.
|
[25]
|
W. Zhou and D. Shen, An inexact PRP conjugate gradient method for symmetric nonlinear equations, Numer. Funct. Anal. Optim., 35 (2014), 370-388.
doi: 10.1080/01630563.2013.871290.
|
[26]
|
W. Zhou and F. Wang, A PRP-based residual method for large-scale monotone nonlinear equations, Appl. Math. Comput., 261 (2015), 1-7.
doi: 10.1016/j.amc.2015.03.069.
|
[27]
|
W. Zhou and L. Zhang, A modified Broyden-like quasi-Newton method for nonlinear equations, J. Comput. Appl. Math., 372 (2020), 112744, 10 pp.
doi: 10.1016/j.cam.2020.112744.
|