-
Previous Article
On the optimal control problems with characteristic time control constraints
- JIMO Home
- This Issue
-
Next Article
Optimality conditions of fenchel-lagrange duality and farkas-type results for composite dc infinite programs
A globally convergent BFGS method for symmetric nonlinear equations
Department of Mathematics and Statistics, Changsha University of Science and Technology, Changsha 410114, China |
A BFGS type method is presented to solve symmetric nonlinear equations, which is shown to be globally convergent under suitable conditions. Compared with some existing Gauss-Newton-based BFGS methods whose iterative matrix approximates the Gauss-Newton matrix, an important feature of the proposed method lies in that the iterative matrix is an approximation of the Jacobian, which greatly reduces condition number of the iterative matrix. Numerical results are reported to support the theory.
References:
[1] |
S. Bojari and M. R. Eslahchi,
Global convergence of a family of modified BFGS methods under a modified weak Wolfe-Powell line search for nonconvex functions, 4OR, 18 (2020), 219-244.
doi: 10.1007/s10288-019-00412-2. |
[2] |
R. H. Byrd and J. Nocedal,
A tool for the analysis of quasi-Newton methods with application to unconstrained minimization, SIAM J. Numer. Anal., 26 (1989), 727-739.
doi: 10.1137/0726042. |
[3] |
H. Cao and D. Li,
Adjoint Broyden methods for symmetric nonlinear equations, Pac. J. Optim., 13 (2017), 645-663.
|
[4] |
J. E. Dennis and J. J. Moré,
A characterization of superlinear convergence and its applications to quasi-Newton methods, Math. Comput., 28 (1974), 549-560.
doi: 10.1090/S0025-5718-1974-0343581-1. |
[5] |
Y.-H. Dai,
Convergence properties of the BFGS algorithm, SIAM J. Optim., 13 (2002), 693-701.
doi: 10.1137/S1052623401383455. |
[6] |
G. Gu, D. Li, L. Qi and S. Zhou,
Descent directions of quasi-Newton method for symmetric nonlinear equations, SIAM J. Numer. Anal., 40 (2002), 1763-1774.
doi: 10.1137/S0036142901397423. |
[7] |
D. Li and M. Fukushima,
A globally and superlinearly convergent Gauss-Newton-based BFGS method for symmetric nonlinear equations, SIAM J. Numer. Anal., 37 (1999), 152-172.
doi: 10.1137/S0036142998335704. |
[8] |
D. Li and M. Fukushima,
A modified BFGS method and its global convergence in nonconvex minimization, J. Comput. Appl. Math., 129 (2001), 15-35.
doi: 10.1016/S0377-0427(00)00540-9. |
[9] |
D. Li and M. Fukushima,
On the global convergence of the BFGS method for nonconvex unconstrained optimization problems, SIAM J. Optim., 11 (2001), 1054-1064.
doi: 10.1137/S1052623499354242. |
[10] |
W. F. Mascarenhas,
The BFGS method with exact line searches fails for nonconvex objective functions, Math. Program., 99 (2004), 49-61.
doi: 10.1007/s10107-003-0421-7. |
[11] |
W. Sun and Y. Yuan, Optimization Theory and Methods, Springer Science and Business Media, LLC, New York, 2006. |
[12] |
Z. Wang, Y. Chen, S. Huang and D. Feng,
A modified nonmonotone BFGS algorithm for solving smooth nonlinear equations, Optim. Lett., 8 (2014), 1845-1860.
doi: 10.1007/s11590-013-0678-6. |
[13] |
Z. Wan, K. Teo, X. Chen and C. Hu,
New BFGS method for unconstrained optimization problem based on modified Armijo line search, Optimization, 63 (2014), 285-304.
doi: 10.1080/02331934.2011.644284. |
[14] |
G. Yuan and X. Lu,
A new backtracking inexact BFGS method for symmetric nonlinear equations, Comput. Math. Appl., 55 (2008), 116-129.
doi: 10.1016/j.camwa.2006.12.081. |
[15] |
G. Yuan, Z. Sheng, B. Wang, W. Hu and C. Li,
The global convergence of a modified BFGS method for nonconvex functions, J. Comput. Appl. Math., 327 (2018), 274-294.
doi: 10.1016/j.cam.2017.05.030. |
[16] |
G. Yuan, Z. Wei and X. Lu,
Global convergence of BFGS and PRP methods under a modified weak Wolfe-Powell line search, Appl. Math. Model., 47 (2017), 811-825.
doi: 10.1016/j.apm.2017.02.008. |
[17] |
G. Yuan and S. Yao,
A BFGS algorithm for solving symmetric nonlinear equations, Optimization, 62 (2013), 85-99.
doi: 10.1080/02331934.2011.564621. |
[18] |
L. Zhang,
A derivative-free conjugate residual method using secant condition for general large-scale nonlinear equations, Numer. Algo., 83 (2020), 1277-1293.
doi: 10.1007/s11075-019-00725-7. |
[19] |
L. Zhang and H. Tang,
A hybrid MBFGS and CBFGS method for nonconvex minimization with a global complexity bound, Pac. J. Optim., 14 (2018), 693-702.
|
[20] |
W. Zhou,
A Gauss-Newton-based BFGS method for symmetric nonlinear least squares problems, Pac. J. Optim., 9 (2013), 373-389.
|
[21] |
W. Zhou, A modified BFGS type quasi-Newton method with line search for symmetric nonlinear equations problems, J. Comput. Appl. Math., 367 (2020), 112454, 8 pp.
doi: 10.1016/j.cam.2019.112454. |
[22] |
W. Zhou and X. Chen,
Global convergence of a new hybrid Gauss-Newton structured BFGS methods for nonlinear least squares problems, SIAM J. Optim., 20 (2010), 2422-2441.
doi: 10.1137/090748470. |
[23] |
W. Zhou and D. Li,
On the Q-linear convergence rate of a class of methods for monotone nonlinear equations, Pac. J. Optim., 14 (2018), 723-737.
|
[24] |
W. Zhou and D. Shen,
Convergence properties of an iterative method for solving symmetric nonlinear equations, J. Optim. Theory Appl., 164 (2015), 277-289.
doi: 10.1007/s10957-014-0547-1. |
[25] |
W. Zhou and D. Shen,
An inexact PRP conjugate gradient method for symmetric nonlinear equations, Numer. Funct. Anal. Optim., 35 (2014), 370-388.
doi: 10.1080/01630563.2013.871290. |
[26] |
W. Zhou and F. Wang,
A PRP-based residual method for large-scale monotone nonlinear equations, Appl. Math. Comput., 261 (2015), 1-7.
doi: 10.1016/j.amc.2015.03.069. |
[27] |
W. Zhou and L. Zhang, A modified Broyden-like quasi-Newton method for nonlinear equations, J. Comput. Appl. Math., 372 (2020), 112744, 10 pp.
doi: 10.1016/j.cam.2020.112744. |
show all references
References:
[1] |
S. Bojari and M. R. Eslahchi,
Global convergence of a family of modified BFGS methods under a modified weak Wolfe-Powell line search for nonconvex functions, 4OR, 18 (2020), 219-244.
doi: 10.1007/s10288-019-00412-2. |
[2] |
R. H. Byrd and J. Nocedal,
A tool for the analysis of quasi-Newton methods with application to unconstrained minimization, SIAM J. Numer. Anal., 26 (1989), 727-739.
doi: 10.1137/0726042. |
[3] |
H. Cao and D. Li,
Adjoint Broyden methods for symmetric nonlinear equations, Pac. J. Optim., 13 (2017), 645-663.
|
[4] |
J. E. Dennis and J. J. Moré,
A characterization of superlinear convergence and its applications to quasi-Newton methods, Math. Comput., 28 (1974), 549-560.
doi: 10.1090/S0025-5718-1974-0343581-1. |
[5] |
Y.-H. Dai,
Convergence properties of the BFGS algorithm, SIAM J. Optim., 13 (2002), 693-701.
doi: 10.1137/S1052623401383455. |
[6] |
G. Gu, D. Li, L. Qi and S. Zhou,
Descent directions of quasi-Newton method for symmetric nonlinear equations, SIAM J. Numer. Anal., 40 (2002), 1763-1774.
doi: 10.1137/S0036142901397423. |
[7] |
D. Li and M. Fukushima,
A globally and superlinearly convergent Gauss-Newton-based BFGS method for symmetric nonlinear equations, SIAM J. Numer. Anal., 37 (1999), 152-172.
doi: 10.1137/S0036142998335704. |
[8] |
D. Li and M. Fukushima,
A modified BFGS method and its global convergence in nonconvex minimization, J. Comput. Appl. Math., 129 (2001), 15-35.
doi: 10.1016/S0377-0427(00)00540-9. |
[9] |
D. Li and M. Fukushima,
On the global convergence of the BFGS method for nonconvex unconstrained optimization problems, SIAM J. Optim., 11 (2001), 1054-1064.
doi: 10.1137/S1052623499354242. |
[10] |
W. F. Mascarenhas,
The BFGS method with exact line searches fails for nonconvex objective functions, Math. Program., 99 (2004), 49-61.
doi: 10.1007/s10107-003-0421-7. |
[11] |
W. Sun and Y. Yuan, Optimization Theory and Methods, Springer Science and Business Media, LLC, New York, 2006. |
[12] |
Z. Wang, Y. Chen, S. Huang and D. Feng,
A modified nonmonotone BFGS algorithm for solving smooth nonlinear equations, Optim. Lett., 8 (2014), 1845-1860.
doi: 10.1007/s11590-013-0678-6. |
[13] |
Z. Wan, K. Teo, X. Chen and C. Hu,
New BFGS method for unconstrained optimization problem based on modified Armijo line search, Optimization, 63 (2014), 285-304.
doi: 10.1080/02331934.2011.644284. |
[14] |
G. Yuan and X. Lu,
A new backtracking inexact BFGS method for symmetric nonlinear equations, Comput. Math. Appl., 55 (2008), 116-129.
doi: 10.1016/j.camwa.2006.12.081. |
[15] |
G. Yuan, Z. Sheng, B. Wang, W. Hu and C. Li,
The global convergence of a modified BFGS method for nonconvex functions, J. Comput. Appl. Math., 327 (2018), 274-294.
doi: 10.1016/j.cam.2017.05.030. |
[16] |
G. Yuan, Z. Wei and X. Lu,
Global convergence of BFGS and PRP methods under a modified weak Wolfe-Powell line search, Appl. Math. Model., 47 (2017), 811-825.
doi: 10.1016/j.apm.2017.02.008. |
[17] |
G. Yuan and S. Yao,
A BFGS algorithm for solving symmetric nonlinear equations, Optimization, 62 (2013), 85-99.
doi: 10.1080/02331934.2011.564621. |
[18] |
L. Zhang,
A derivative-free conjugate residual method using secant condition for general large-scale nonlinear equations, Numer. Algo., 83 (2020), 1277-1293.
doi: 10.1007/s11075-019-00725-7. |
[19] |
L. Zhang and H. Tang,
A hybrid MBFGS and CBFGS method for nonconvex minimization with a global complexity bound, Pac. J. Optim., 14 (2018), 693-702.
|
[20] |
W. Zhou,
A Gauss-Newton-based BFGS method for symmetric nonlinear least squares problems, Pac. J. Optim., 9 (2013), 373-389.
|
[21] |
W. Zhou, A modified BFGS type quasi-Newton method with line search for symmetric nonlinear equations problems, J. Comput. Appl. Math., 367 (2020), 112454, 8 pp.
doi: 10.1016/j.cam.2019.112454. |
[22] |
W. Zhou and X. Chen,
Global convergence of a new hybrid Gauss-Newton structured BFGS methods for nonlinear least squares problems, SIAM J. Optim., 20 (2010), 2422-2441.
doi: 10.1137/090748470. |
[23] |
W. Zhou and D. Li,
On the Q-linear convergence rate of a class of methods for monotone nonlinear equations, Pac. J. Optim., 14 (2018), 723-737.
|
[24] |
W. Zhou and D. Shen,
Convergence properties of an iterative method for solving symmetric nonlinear equations, J. Optim. Theory Appl., 164 (2015), 277-289.
doi: 10.1007/s10957-014-0547-1. |
[25] |
W. Zhou and D. Shen,
An inexact PRP conjugate gradient method for symmetric nonlinear equations, Numer. Funct. Anal. Optim., 35 (2014), 370-388.
doi: 10.1080/01630563.2013.871290. |
[26] |
W. Zhou and F. Wang,
A PRP-based residual method for large-scale monotone nonlinear equations, Appl. Math. Comput., 261 (2015), 1-7.
doi: 10.1016/j.amc.2015.03.069. |
[27] |
W. Zhou and L. Zhang, A modified Broyden-like quasi-Newton method for nonlinear equations, J. Comput. Appl. Math., 372 (2020), 112744, 10 pp.
doi: 10.1016/j.cam.2020.112744. |
GN-BFGS | Algorithm 2.1 | ||||||||
0.01 | 9 | 22 | 63 | 1.9e-007 | 1578 | 17 | 33 | 1.27e-008 | 46 |
49 | 288 | 2041 | 7.85e-007 | 1117816 | 135 | 626 | 9.47e-007 | 1419 | |
99 | 1000 | 8307 | 3.2e-006 | 18348874 | 1000 | 8072 | 0.000741 | 8672 | |
0.1 | 9 | 22 | 64 | 4.36e-007 | 1663 | 17 | 36 | 5.04e-007 | 42 |
49 | 298 | 2130 | 8.31e-007 | 1137498 | 118 | 487 | 8.26e-007 | 969 | |
99 | 1000 | 8144 | 0.000850 | 1642370 | 1000 | 7800 | 0.000692 | 10814 | |
1 | 9 | 23 | 67 | 4.76e-007 | 1787 | 19 | 40 | 2.31e-007 | 45 |
49 | 191 | 947 | 1.13e-007 | 1061079 | 160 | 697 | 4.13e-007 | 1255 | |
99 | 1000 | 9113 | 0.000756 | 6266525 | 1000 | 7474 | 0.000590 | 10730 | |
10 | 9 | 24 | 69 | 7.03e-007 | 1781 | 20 | 39 | 1.73e-007 | 45 |
49 | 181 | 861 | 2.21e-007 | 1110234 | 148 | 609 | 4.41e-007 | 1292 | |
99 | 1000 | 8591 | 0.000122 | 1664830 | 1000 | 6719 | 5.27e-005 | 5989 | |
50 | 9 | 25 | 71 | 2.51e-007 | 1713 | 20 | 39 | 4.5e-007 | 43 |
49 | 185 | 883 | 1.11e-007 | 1098144 | 133 | 531 | 8.71e-007 | 1217 | |
99 | 823 | 6041 | 4.55e-008 | 18835000 | 548 | 3361 | 8.72e-007 | 4638 |
GN-BFGS | Algorithm 2.1 | ||||||||
0.01 | 9 | 22 | 63 | 1.9e-007 | 1578 | 17 | 33 | 1.27e-008 | 46 |
49 | 288 | 2041 | 7.85e-007 | 1117816 | 135 | 626 | 9.47e-007 | 1419 | |
99 | 1000 | 8307 | 3.2e-006 | 18348874 | 1000 | 8072 | 0.000741 | 8672 | |
0.1 | 9 | 22 | 64 | 4.36e-007 | 1663 | 17 | 36 | 5.04e-007 | 42 |
49 | 298 | 2130 | 8.31e-007 | 1137498 | 118 | 487 | 8.26e-007 | 969 | |
99 | 1000 | 8144 | 0.000850 | 1642370 | 1000 | 7800 | 0.000692 | 10814 | |
1 | 9 | 23 | 67 | 4.76e-007 | 1787 | 19 | 40 | 2.31e-007 | 45 |
49 | 191 | 947 | 1.13e-007 | 1061079 | 160 | 697 | 4.13e-007 | 1255 | |
99 | 1000 | 9113 | 0.000756 | 6266525 | 1000 | 7474 | 0.000590 | 10730 | |
10 | 9 | 24 | 69 | 7.03e-007 | 1781 | 20 | 39 | 1.73e-007 | 45 |
49 | 181 | 861 | 2.21e-007 | 1110234 | 148 | 609 | 4.41e-007 | 1292 | |
99 | 1000 | 8591 | 0.000122 | 1664830 | 1000 | 6719 | 5.27e-005 | 5989 | |
50 | 9 | 25 | 71 | 2.51e-007 | 1713 | 20 | 39 | 4.5e-007 | 43 |
49 | 185 | 883 | 1.11e-007 | 1098144 | 133 | 531 | 8.71e-007 | 1217 | |
99 | 823 | 6041 | 4.55e-008 | 18835000 | 548 | 3361 | 8.72e-007 | 4638 |
GN-BFGS | Algorithm 2.1 | ||||||||
0.01 | 50 | 4 | 37 | NaN | Inf | 60 | 235 | 8.9382e-007 | 14 |
100 | 5 | 53 | NaN | NaN | 79 | 321 | 8.7896e-007 | 28 | |
200 | 5 | 53 | NaN | Inf | 91 | 362 | 8.363e-007 | 29 | |
0.1 | 50 | 67 | 306 | 7.6196e-007 | 72 | 59 | 234 | 5.3211e-007 | 13 |
100 | 132 | 623 | 6.1482e-007 | 133 | 83 | 341 | 6.9712e-007 | 29 | |
200 | 170 | 879 | 8.2061e-007 | 356 | 88 | 358 | 8.8805e-007 | 51 | |
1 | 50 | 69 | 312 | 9.7115e-007 | 618 | 59 | 225 | 7.0356e-007 | 13 |
100 | 134 | 619 | 9.3146e-007 | 458 | 79 | 322 | 9.6653e-007 | 33 | |
200 | 186 | 956 | 8.5496e-007 | 595 | 101 | 401 | 9.152e-007 | 43 | |
10 | 50 | 18 | 241 | NaN | NaN | 65 | 265 | 7.7764e-007 | 15 |
100 | 15 | 194 | NaN | NaN | 88 | 385 | 9.7307e-007 | 49 | |
200 | 15 | 188 | NaN | NaN | 111 | 461 | 7.7243e-007 | 50 | |
-0.1 | 50 | 77 | 341 | 4.4278e-007 | 59 | 60 | 236 | 9.0422e-007 | 26 |
100 | 120 | 585 | 9.5748e-007 | 136 | 73 | 305 | 9.8125e-007 | 39 | |
200 | 221 | 1011 | 8.6068e-007 | 456 | 90 | 366 | 8.6948e-007 | 40 | |
500 | 296 | 1684 | 9.1214e-007 | 1095 | 88 | 359 | 9.9204e-007 | 79 |
GN-BFGS | Algorithm 2.1 | ||||||||
0.01 | 50 | 4 | 37 | NaN | Inf | 60 | 235 | 8.9382e-007 | 14 |
100 | 5 | 53 | NaN | NaN | 79 | 321 | 8.7896e-007 | 28 | |
200 | 5 | 53 | NaN | Inf | 91 | 362 | 8.363e-007 | 29 | |
0.1 | 50 | 67 | 306 | 7.6196e-007 | 72 | 59 | 234 | 5.3211e-007 | 13 |
100 | 132 | 623 | 6.1482e-007 | 133 | 83 | 341 | 6.9712e-007 | 29 | |
200 | 170 | 879 | 8.2061e-007 | 356 | 88 | 358 | 8.8805e-007 | 51 | |
1 | 50 | 69 | 312 | 9.7115e-007 | 618 | 59 | 225 | 7.0356e-007 | 13 |
100 | 134 | 619 | 9.3146e-007 | 458 | 79 | 322 | 9.6653e-007 | 33 | |
200 | 186 | 956 | 8.5496e-007 | 595 | 101 | 401 | 9.152e-007 | 43 | |
10 | 50 | 18 | 241 | NaN | NaN | 65 | 265 | 7.7764e-007 | 15 |
100 | 15 | 194 | NaN | NaN | 88 | 385 | 9.7307e-007 | 49 | |
200 | 15 | 188 | NaN | NaN | 111 | 461 | 7.7243e-007 | 50 | |
-0.1 | 50 | 77 | 341 | 4.4278e-007 | 59 | 60 | 236 | 9.0422e-007 | 26 |
100 | 120 | 585 | 9.5748e-007 | 136 | 73 | 305 | 9.8125e-007 | 39 | |
200 | 221 | 1011 | 8.6068e-007 | 456 | 90 | 366 | 8.6948e-007 | 40 | |
500 | 296 | 1684 | 9.1214e-007 | 1095 | 88 | 359 | 9.9204e-007 | 79 |
[1] |
Sven Jarohs, Tobias Weth. Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2581-2615. doi: 10.3934/dcds.2014.34.2581 |
[2] |
Chunlin Hao, Xinwei Liu. Global convergence of an SQP algorithm for nonlinear optimization with overdetermined constraints. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 19-29. doi: 10.3934/naco.2012.2.19 |
[3] |
Zhong Tan, Qiuju Xu, Huaqiao Wang. Global existence and convergence rates for the compressible magnetohydrodynamic equations without heat conductivity. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5083-5105. doi: 10.3934/dcds.2015.35.5083 |
[4] |
Ruiying Wei, Yin Li, Zheng-an Yao. Global existence and convergence rates of solutions for the compressible Euler equations with damping. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 2949-2967. doi: 10.3934/dcdsb.2020047 |
[5] |
Xingwen Hao, Yachun Li, Zejun Wang. Non-relativistic global limits to the three dimensional relativistic euler equations with spherical symmetry. Communications on Pure and Applied Analysis, 2010, 9 (2) : 365-386. doi: 10.3934/cpaa.2010.9.365 |
[6] |
Walter Allegretto, Yanping Lin, Zhiyong Zhang. Convergence to convection-diffusion waves for solutions to dissipative nonlinear evolution equations. Conference Publications, 2009, 2009 (Special) : 11-23. doi: 10.3934/proc.2009.2009.11 |
[7] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[8] |
José A. Carrillo, Jean Dolbeault, Ivan Gentil, Ansgar Jüngel. Entropy-energy inequalities and improved convergence rates for nonlinear parabolic equations. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 1027-1050. doi: 10.3934/dcdsb.2006.6.1027 |
[9] |
Matteo Novaga, Diego Pallara, Yannick Sire. A symmetry result for degenerate elliptic equations on the Wiener space with nonlinear boundary conditions and applications. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 815-831. doi: 10.3934/dcdss.2016030 |
[10] |
Xavier Cabré, Eleonora Cinti. Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1179-1206. doi: 10.3934/dcds.2010.28.1179 |
[11] |
Jeremy L. Marzuola, Michael I. Weinstein. Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross-Pitaevskii equations. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1505-1554. doi: 10.3934/dcds.2010.28.1505 |
[12] |
W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure and Applied Analysis, 2005, 4 (2) : 431-444. doi: 10.3934/cpaa.2005.4.431 |
[13] |
Daniela Giachetti, Maria Michaela Porzio. Global existence for nonlinear parabolic equations with a damping term. Communications on Pure and Applied Analysis, 2009, 8 (3) : 923-953. doi: 10.3934/cpaa.2009.8.923 |
[14] |
Zuzana Došlá, Mauro Marini, Serena Matucci. Global Kneser solutions to nonlinear equations with indefinite weight. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3297-3308. doi: 10.3934/dcdsb.2018252 |
[15] |
Monica Conti, Elsa M. Marchini, V. Pata. Global attractors for nonlinear viscoelastic equations with memory. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1893-1913. doi: 10.3934/cpaa.2016021 |
[16] |
Huijiang Zhao, Yinchuan Zhao. Convergence to strong nonlinear rarefaction waves for global smooth solutions of $p-$system with relaxation. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1243-1262. doi: 10.3934/dcds.2003.9.1243 |
[17] |
Changlu Liu, Shuangli Qiao. Symmetry and monotonicity for a system of integral equations. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1925-1932. doi: 10.3934/cpaa.2009.8.1925 |
[18] |
Toshiko Ogiwara, Hiroshi Matano. Monotonicity and convergence results in order-preserving systems in the presence of symmetry. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 1-34. doi: 10.3934/dcds.1999.5.1 |
[19] |
Stefano Scrobogna. Global existence and convergence of nondimensionalized incompressible Navier-Stokes equations in low Froude number regime. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5471-5511. doi: 10.3934/dcds.2020235 |
[20] |
Annie Raoult. Symmetry groups in nonlinear elasticity: an exercise in vintage mathematics. Communications on Pure and Applied Analysis, 2009, 8 (1) : 435-456. doi: 10.3934/cpaa.2009.8.435 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]