DMU |
||||
1 | [1,2] | [2,3] | 1.0909 | 1.025 |
2 | [2.5, 3] | [3,4] | 1.0545 | 0.9405 |
3 | [4,5] | [5,7] | 1.5714 | 1.0435 |
4 | [6,7] | [2,5] | 1 | 0.76 |
5 | [4, 4.5] | [1,3] | 0.9643 | 0.8444 |
The conventional data envelopment analysis (DEA) models presume that the values of input-output variables of the decision-making units (DMUs) are precisely known. However, some real-life situations can authoritatively mandate the data to vary in concrete fine-tuned ranges, which can include negative values and measures that are allowed to take integer values only. Our study proposes an integrated dynamic DEA model to accommodate interval-valued and integer-valued features that can take negative values. The proposed one-step model follows the directional distance function approach to determine the efficiency of DMUs over time in the presence of carryovers connecting the consecutive periods. We use the pessimistic and optimistic standpoints to evaluate the respective lower and upper bounds of the interval efficiency scores of the DMUs. We compare our proposed approach with a few relevant studies in the literature. We also validate our model on a synthetically generated dataset. Furthermore, we showcase the proposed procedure's applicability on a real dataset from 2014 to 2018 of airlines operating in India.
Citation: |
Table 1.
Results from models
DMU |
||||
1 | [1,2] | [2,3] | 1.0909 | 1.025 |
2 | [2.5, 3] | [3,4] | 1.0545 | 0.9405 |
3 | [4,5] | [5,7] | 1.5714 | 1.0435 |
4 | [6,7] | [2,5] | 1 | 0.76 |
5 | [4, 4.5] | [1,3] | 0.9643 | 0.8444 |
Table 2.
Results from models
DMU |
class (our approach) | class (by [17]) | ||||
1 | 1.0063 | 1.0063 | S | 1 | 1 | |
2 | 0.9858 | 1.0116 | E | 0.813 | 1 | |
3 | 1.0006 | 1.0103 | S | 1 | 1 | |
4 | 0.9765 | 0.9889 | IE | 0.52 | 0.698 | |
5 | 1.0036 | 1.0084 | S | 1 | 1 | |
6 | 0.9678 | 0.9818 | IE | 0.427 | 0.614 | |
7 | 1.5072 | 1.5760 | S | 1 | 1 | |
8 | 0.9858 | 0.9896 | IE | 0.253 | 0.513 | |
9 | 1.0433 | 1.1944 | S | 1 | 1 | |
10 | 0.9616 | 0.9940 | IE | 0.718 | 0.901 | |
11 | 0.9984 | 1.0002 | E | 0.777 | 1 | |
12 | 0.9970 | 0.9990 | IE | 0.667 | 1 | |
13 | 0.9897 | 0.9939 | IE | 0.49 | 0.663 | |
14 | 0.9990 | 1.0042 | E | 0.929 | 1 | |
15 | 0.9940 | 1.0127 | E | 1 | 1 | |
16 | 0.9823 | 0.9928 | IE | 0.616 | 0.834 | |
17 | 0.9635 | 0.9823 | IE | 0.47 | 0.665 | |
18 | 0.9972 | 0.9990 | IE | 0.614 | 0.846 | |
19 | 0.9913 | 1.0051 | E | 0.866 | 1 | |
20 | 1.0066 | 1.0099 | S | 1 | 1 |
Table 3.
Results from models
DMU |
1 | 2 | 3 | 4 | 5 |
1.0591 | 1.0275 | 0.9515 | 1.0108 | 0.9548 | |
1.1077 | 1.0833 | 1.0065 | 1.0108 | 0.9730 | |
Class | S | S | E | S | IE |
Rank | 1 | 2 | 4 | 3 | 5 |
1.03 | 1.06 | 0.74 | 0.70 | 0.62 | |
2.02 | 2.04 | 1.04 | 0.87 | 0.85 | |
Class | |||||
Rank | 1 | 2 | 3 | 4 | 5 |
0.9527 | 1.0260 | 1.0559 | 1.0143 | 0.9547 | |
1.0065 | 1.0773 | 1.1046 | 1.0143 | 0.9766 | |
Class | E | S | S | S | IE |
Rank | 4 | 2 | 1 | 3 | 5 |
0.75 | 1.05 | 1.03 | 0.71 | 0.75 | |
1.03 | 1.75 | 1.88 | 0.79 | 0.85 | |
Class | |||||
Rank | 3 | 2 | 1 | 5 | 4 |
1.0117 | 1.0291 | 0.9653 | 1.0675 | 0.9652 | |
1.0682 | 1.1144 | 1.0151 | 1.1123 | 1.0220 | |
Class | S | S | E | S | E |
Rank | 3 | 2 | 5 | 1 | 4 |
0.70 | 1.10 | 0.73 | 1.04 | 0.76 | |
0.87 | 2.04 | 0.96 | 2.21 | 0.83 | |
Class | |||||
Rank | 5 | 2 | 3 | 1 | 4 |
1.0891 | 1.0818 | 0.9646 | 1.0225 | 0.9886 | |
1.1149 | 1.0818 | 1.0236 | 1.0685 | 1.0330 | |
Class | S | S | E | S | E |
Rank | 1 | 3 | 5 | 2 | 4 |
0.89 | 0.68 | 0.73 | 1.05 | 0.81 | |
1.87 | 0.95 | 0.88 | 1.79 | 1.33 | |
Class | |||||
Rank | 2 | 4 | 1 | 5 | 3 |
0.9759 | 1.0442 | 0.9765 | 0.9424 | 0.9528 | |
1.0569 | 1.0745 | 1.0185 | 0.9867 | 0.9839 | |
Class | E | S | E | IE | IE |
Rank | 2 | 1 | 3 | 5 | 4 |
0.95 | 1.12 | 0.78 | 0.71 | 0.72 | |
1.66 | 1.76 | 1.13 | 0.98 | 0.94 | |
Class | |||||
Rank | 2 | 1 | 3 | 4 | 5 |
Table 4.
Result from models
DMU |
interval of efficiency | class | rank |
1 | [0.7897, 1.2083] | E | 28 |
2 | [0.8055, 1.1376] | E | 25 |
3 | [0.8545, 1.3422] | E | 6 |
4 | [0.8891, 1.2386] | E | 7 |
5 | [0.8299, 1.2265] | E | 21 |
6 | [0.8856, 1.2316] | E | 9 |
7 | [0.8397, 1.2817] | E | 15 |
8 | [0.8396, 1.2332] | E | 16 |
9 | [0.8852, 1.224] | E | 10 |
10 | [0.7816, 1.2137] | E | 29 |
11 | [0.8582, 1.2269] | E | 12 |
12 | [0.7638, 1.1997] | E | 30 |
13 | [0.8442, 1.2267] | E | 18 |
14 | [0.8514, 1.1736] | E | 13 |
15 | [0.8054, 1.1402] | E | 26 |
16 | [0.8265, 1.2899] | E | 17 |
17 | [0.842, 1.1696] | E | 19 |
18 | [0.9258, 1.2041] | E | 5 |
19 | [0.8057, 1.2573] | E | 23 |
20 | [0.8351, 1.1974] | E | 14 |
21 | [0.8808, 1.2 759] | E | 8 |
22 | [0.8023, 1.2583] | E | 24 |
23 | [0.9288, 1.2615] | E | 4 |
24 | [0.8297, 1.2457] | E | 22 |
25 | [0.7959, 1.1546] | E | 27 |
26 | [0.875, 1.1831] | E | 11 |
27 | [0.9845, 1.2724] | E | 3 |
28 | [1.0122, 1.3216] | S | 1 |
29 | [0.9875, 1.1374] | E | 2 |
30 | [0.8106, 1.1771] | E | 20 |
Table 5. Inputs, outputs, desirable and undesirable carryovers applied in the empirical analysis
Inputs | Operating expenses (in millions INR) |
Desirable carryover | Fleet size (in number) |
Undesirable carryover | Losses carried forward after tax (in millions INR) |
Outputs | Operating revenue (in millions INR) |
Pax load factor per month (in |
|
Weight load factor per month (in |
|
Passengers carried per month (in number) | |
Cargo carried per month (in tonne) |
Table 6. Data of 11 Indian airlines for the period 2014-15
airline | fleet size | losses carried | operating expenses | operating revenue | pax load factor | weight load factor | passengers carried | cargo carried |
1 | 101 | 59058.4 | 226854.4 | 206131.6 | [73.7, 86.9] | [66.7, 77.6] | [990986,1217671] | [7940,10098] |
2 | 17 | 611.7 | 19597.6 | 22948.2 | [56.3, 93.8] | [45.4, 98.6] | [8430,18674] | [0, 32.8] |
3 | 10 | 1789.2 | 3034 | 2279.5 | [60.7, 72.2] | [55.3, 65.6] | [19612,38835] | [13,19] |
4 | 3 | 1333.1 | 2885 | 1551.9 | [71.7, 84] | [40.6, 53.2] | [68790,181483] | [450,1432] |
5 | 5 | -43.9 | 6310.4 | 6592 | [0, 0] | [66.1, 71.9] | [0, 0] | [9542,11858] |
6 | 19 | -363.7 | 28715.8 | 30664.3 | [75.6, 89.4] | [70.6, 82.4] | [534795,639264] | [3932,5485] |
7 | 94 | -16590.3 | 123578.6 | 139253.4 | [76.8, 91.9] | [68.1, 86.4] | [2230645,2769283] | [10300, 12303.8] |
8 | 107 | 18137.1 | 215030.1 | 195606.1 | [77.1, 89.5] | [69.7, 78.6] | [1186492,1393452] | [6355,9124] |
9 | 9 | 2876.5 | 16775.2 | 14229.4 | [74.9, 89.7] | [68.8, 79.8] | [171551,294766] | [915,1385] |
10 | 34 | 6870.5 | 60885 | 52015.3 | [80, 93.4] | [75.3, 87.7] | [552726,976517] | [3202,6208] |
11 | 6 | 1990.7 | 2681.9 | 691.3 | [45.4, 77.6] | [34.9, 66.6] | [14999,158348] | [0, 2151] |
Table 7.
Results of the dynamic integrated interval efficiency models
Super-efficient DMUs | Efficient DMUs | ||||||
airline | efficiency interval | class | ranking vector | rank | ranking vector | rank | |
1 | [1.3333, 1.3938] | S | 7.5 | 2 | |||
2 | [1.0026, 1.1066] | S | 2.459 | 7 | |||
3 | [1.0156, 1.0369] | S | 1.356 | 9 | |||
4 | [1.0052, 1.2314] | S | 4.053 | 6 | |||
5 | [1.1249, 1.2199] | S | 5.373 | 3 | |||
6 | [0.9994, 1.0895] | E | 1.051 | 10 | |||
7 | [1.4685, 1.6575] | S | 8.5 | 1 | |||
8 | [1.0950, 1.1924] | S | 4.847 | 4 | |||
9 | [0.9986, 1.0734] | E | 0.949 | 11 | |||
10 | [1.0210, 1.2842] | S | 4.630 | 5 | |||
11 | [1.0081, 1.0591] | S | 1.781 | 8 |
Table 8.
Synthetic dataset of 30 DMUs for
DMU |
|||||
1 | [0, 3] | [-0.1615, 3.0767] | [2,10] | [3.6768, 7.233] | [-0.9007, 0.3911] |
2 | [-5, 0] | [-1.182, 7.4288] | [1,3] | [5.0074, 7.5827] | [-3.833, -1.0627] |
3 | [-2, -1] | [2.863, 6.6322] | [-2, 6] | [6.5486, 11.8582] | [0.7328, 7.2357] |
4 | [-11, -5] | [5.5777, 9.1795] | [-4, -3] | [7.2685, 14.1149] | [3.8294, -2.4358] |
5 | [-3, 1] | [0.6484, 5.7141] | [1,8] | [6.5704, 9.7772] | [3.5951, 3.4671] |
6 | [3,6] | [-0.2489, 4.7478] | [10,10] | [5.5064, 9.1181] | [5.1994, 0.0173] |
7 | [-6, -2] | [-5.4287, -2.6282] | [0, 3] | [-1.6806, 3.1973] | [-6.5508, -0.0203] |
8 | [-2, 2] | [3.4445, 5.0916] | [1,8] | [6.8983, 9.4379] | [-0.7025, -3.7166] |
9 | [2,5] | [-5.9021, -2.2483] | [7,12] | [-1.7842, 0.9635] | [3.2851, -1.2266] |
10 | [-2, 3] | [-0.7791, 2.458] | [2,7] | [3.2602, 5.8106] | [-3.2601, -0.8168] |
11 | [-9, -6] | [4.5724, 8.613] | [-2, -1] | [10.5083, 15.6547] | [-2.0706, 1.0867] |
12 | [-1, 2] | [1.582, 4.8292] | [2,4] | [4.7475, 7.3799] | [-5.0713, -2.4425] |
13 | [1,3] | [5.5856, 5.9474] | [5,8] | [9.8552, 9.9694] | [-5.5407, 0.0637] |
14 | [-6, -4] | [-1.6635, 1.3701] | [2,2] | [1.7472, 2.1861] | [-2.9329, -1.6078] |
15 | [-3, 1] | [-3.975, -1.1701] | [3,3] | [-0.7801, 0.2799] | [-2.3205, -1.5946] |
16 | [-7, 0] | [-6.6192, -0.3315] | [-4, 0] | [-1.9427, -1.3506] | [-6.3538, -0.7493] |
17 | [-4, 0] | [1.1301, 5.0351] | [0, 0] | [6.6786, 8.0126] | [-1.7038, 1.2584] |
18 | [6,8] | [-3.3653, 2.1456] | [12,13] | [1.6537, 3.4448] | [-1.2121, 5.5107] |
19 | [-5, 0] | [6.2833, 7.7517] | [-2, 0] | [8.1914, 12.7517] | [0.4046, 3.4051] |
20 | [-3, -1] | [1.1149, 1.1633] | [-2, 3] | [5.6438, 8.1306] | [-1.0965, 5.2077] |
21 | [-5, 4] | [8.9549, 9.3198] | [5,8] | [11.0651, 17.3472] | [-0.981, -5.7919] |
22 | [3,5] | [-3.7758, -0.397] | [4,7] | [2.2879, 3.0219] | [-1.1107, -3.3136] |
23 | [-8, -1] | [-5.5734, -1.605] | [-1, 3] | [-2.0838, 4.5846] | [4.0279, -0.1544] |
24 | [-2, 4] | [-2.359, 1.1816] | [2,5] | [0.7777, 3.9289] | [-0.2559, -3.4568] |
25 | [-1, 5] | [2.6094, 2.7898] | [5,6] | [3.9727, 6.8607] | [-0.5585, 0.7262] |
26 | [-1, -1] | [2.9899, 6.6723] | [5,6] | [8.6948, 11.5419] | [-1.5396, -3.3929] |
27 | [0, 5] | [-3.0471, 3.6269] | [4,9] | [1.2691, 4.5094] | [5.9166, 1.5114] |
28 | [0, 5] | [-2.8085, 4.2057] | [2,11] | [4.4506, 5.2129] | [2.597, 9.379] |
29 | [-1, 3] | [1.7709, 3.0374] | [2,6] | [5.6242, 6.2396] | [7.127, -3.5507] |
30 | [-5, -2] | [-1.5041, 1.8533] | [-2, 4] | [2.1227, 5.3259] | [-1.9647, -4.8179] |
Table 9.
Synthetic dataset of 30 DMUs for
DMU |
||||
1 | [-3, 1] | [1,3] | [-11.36, -3.2555] | [-3.3936, -1.5096] |
2 | [1,1] | [2,5] | [-0.9634, 1.7725] | [1.7725, 4.0171] |
3 | [-7, -1] | [0, 2] | [1.8694, 3.4901] | [3.4901, 8.0933] |
4 | [-3, 7] | [5,7] | [-0.4754, 4.3661] | [4.3661, 2.8741] |
5 | [-3, 2] | [0, 4] | [-2.6313, 4.1259] | [4.1259, 2.8374] |
6 | [-5, 0] | [1,3] | [0.6498, 3.7561] | [3.7561, 2.7529] |
7 | [-1, 6] | [4,9] | [-9.4604, -4.8163] | [-4.8163, -5.7451] |
8 | [-8, -4] | [-4, -1] | [-1.7383, -0.5501] | [-0.5501, 1.5019] |
9 | [2,5] | [6,10] | [6.2155, 9.9875] | [9.9875, 11.2043] |
10 | [-4, 4] | [6,6] | [0.3967, 3.3566] | [3.3566, 4.4534] |
11 | [-3, -1] | [-2, -2] | [-3.638, -0.2749] | [-0.2749, 2.2454] |
12 | [-1, 8] | [4,11] | [-6.8705, -3.8813] | [-3.8813, -2.2912] |
13 | [-6, 2] | [1,4] | [1.3005, 3.6518] | [3.6518, 5.8577] |
14 | [0, 1] | [1,5] | [4.6112, 7.6644] | [7.6644, 7.6551] |
15 | [3,5] | [3,8] | [-3.1301, -0.6347] | [-0.6347, 0.9748] |
16 | [-6, -3] | [-1, 2] | [-1.3322, 0.3764] | [0.3764, 0.6187] |
17 | [-3, -2] | [0, 4] | [-8.6088, -6.2055] | [-6.2055, -2.6939] |
18 | [1,5] | [5,8] | [-1.0369, 5.3176] | [5.3176, 5.2215] |
19 | [1,4] | [6,12] | [-3.0645, 2.224] | [2.224, 0.3195] |
20 | [-4, 0] | [1,5] | [-5.066, -1.4253] | [-1.4253, -1.7729] |
21 | [-2, 3] | [3,3] | [4.9521, 8.3288] | [8.3288, 7.6476] |
22 | [2,4] | [3,15] | [-1.5163, 3.1201] | [3.1201, 4.2655] |
23 | [-5, -2] | [-2, 1] | [-5.5681, -1.3893] | [-1.3893, -1.5713] |
24 | [-10, -4] | [-4, -2] | [-4.6455, 1.4948] | [1.4948, 1.8267] |
25 | [-3, 2] | [0, 4] | [-3.4395, 6.5853] | [6.5853, 7.1234] |
26 | [2,6] | [8,9] | [7.6897, 9.6555] | [9.6555, 10.8196] |
27 | [2,3] | [6,12] | [-7.7017, -1.5092] | [-1.5092, -1.0977] |
28 | [2,8] | [8,10] | [8.3769, 11.9711] | [11.9711, 13.669] |
29 | [-1, 5] | [0, 7] | [-6.1897, 0.5822] | [0.5822, 0.6056] |
30 | [-3, 3] | [3,4] | [-1.7567, 0.7063] | [0.7063, 2.1542] |
[1] |
M. Allahyar and M. Rostamy-Malkhalifeh, Negative data in data envelopment analysis: Efficiency analysis and estimating returns to scale, Computers & Industrial Engineering, 82 (2015), 78-81.
doi: 10.1016/j.cie.2015.01.022.![]() ![]() |
[2] |
H. Azizi, A. Amirteimoori and S. Kordrostami, A note on dual models of interval DEA and its extension to interval data, International Journal of Industrial Mathematics, 10 (2018), 111-126.
![]() |
[3] |
H. Azizi and Y.-M. Wang, Improved DEA models for measuring interval efficiencies of decision-making units, Measurement, 46 (2013), 1325-1332.
doi: 10.1016/j.measurement.2012.11.050.![]() ![]() |
[4] |
Y. Chen, J. Du and J. Huo, Super-efficiency based on a modified directional distance function, Omega, 41 (2013), 621-625.
doi: 10.1016/j.omega.2012.06.006.![]() ![]() |
[5] |
G. Cheng, P. Zervopoulos and Z. Qian, A variant of radial measure capable of dealing with negative inputs and outputs in data envelopment analysis, European Journal of Operational Research, 225 (2013), 100-105.
doi: 10.1016/j.ejor.2012.09.031.![]() ![]() |
[6] |
W. W. Cooper, K. S. Park and G. Yu, IDEA and AR-IDEA: Models for dealing with imprecise data in DEA, Management Science, 45 (1999), 597-607.
doi: 10.1287/mnsc.45.4.597.![]() ![]() |
[7] |
B. Ebrahimi, M. Tavana, M. Rahmani and F. J. Santos-Arteaga, Efficiency measurement in data envelopment analysis in the presence of ordinal and interval data, Neural Computing and Applications, 30 (2018), 1971-1982.
doi: 10.1007/s00521-016-2826-2.![]() ![]() |
[8] |
A. Emrouznejad, A. L. Anouze and E. Thanassoulis, A semi-oriented radial measure for measuring the efficiency of decision making units with negative data, using DEA, European Journal of Operational Research, 200 (2010), 297-304.
doi: 10.1007/s10479-009-0639-8.![]() ![]() |
[9] |
A. Emrouznejad, M. Rostamy-Malkhalifeh, A. Hatami-Marbini and M. Tavana, General and multiplicative non-parametric corporate performance models with interval ratio data, Applied Mathematical Modelling, 36 (2012), 5506-5514.
doi: 10.1016/j.apm.2011.12.040.![]() ![]() |
[10] |
T. Entani, Y. Maeda and H. Tanaka, Dual models of interval DEA and its extension to interval data, European Journal of Operational Research, 136 (2002), 32-45.
doi: 10.1016/S0377-2217(01)00055-8.![]() ![]() ![]() |
[11] |
A. Esmaeilzadeh and A. Hadi-Vencheh, A super-efficiency model for measuring aggregative efficiency of multi-period production systems, Measurement, 46 (2013), 3988-3993.
doi: 10.1016/j.measurement.2013.07.023.![]() ![]() |
[12] |
R. Färe and S. Grosskopf, Network DEA, Socio-Economic Planning Sciences, 34 (2000), 35-49.
![]() |
[13] |
R. Färe, S. Grosskopf and P. Roos, Malmquist productivity indexes: A survey of theory and practice, in Index Numbers: Essays in Honour of Sten Malmquist, Kluwer Academic Publishers, Boston, 1998,127–190.
![]() |
[14] |
R. Färe and S. Grosskopf, Intertemporal production frontiers: With dynamic dea, Journal of the Operational Research Society, 48 (1997), 656-656.
![]() |
[15] |
I.-L. Guo, H.-S. Lee and D. Lee, An integrated model for slack-based measure of super-efficiency in additive DEA, Omega, 67 (2017), 160-167.
doi: 10.1016/j.omega.2016.05.002.![]() ![]() |
[16] |
P. Guo, Fuzzy data envelopment analysis and its application to location problems, Information Sciences, 179 (2009), 820-829.
doi: 10.1016/j.ins.2008.11.003.![]() ![]() ![]() |
[17] |
A. Hatami-Marbini, A. Emrouznejad and P. J. Agrell, Interval data without sign restrictions in DEA, Applied Mathematical Modelling, 38 (2014), 2028-2036.
doi: 10.1016/j.apm.2013.10.027.![]() ![]() ![]() |
[18] |
A. Hatami-Marbini, A. Emrouznejad and M. Tavana, A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making, European Journal of Operational Research, 214 (2011), 457-472.
doi: 10.1016/j.ejor.2011.02.001.![]() ![]() ![]() |
[19] |
G. R. Jahanshahloo and M. Piri, Data Envelopment Analysis (DEA) with integer and negative inputs and outputs, Journal of Data Envelopment Analysis and Decision Science, 2013 (2013), 1-15.
![]() |
[20] |
C. Kao and S.-T. Liu, Stochastic data envelopment analysis in measuring the efficiency of Taiwan commercial banks, European Journal of Operational Research, 196 (2009), 312-322.
doi: 10.1016/j.ejor.2008.02.023.![]() ![]() |
[21] |
R. Kazemi Matin and A. Emrouznejad, An integer-valued data envelopment analysis model with bounded outputs, International Transactions in Operational Research, 18 (2011), 741-749.
doi: 10.1111/j.1475-3995.2011.00828.x.![]() ![]() ![]() |
[22] |
K. Kerstens and I. Van de Woestyne, A note on a variant of radial measure capable of dealing with negative inputs and outputs in DEA, European Journal of Operational Research, 234 (2014), 341-342.
doi: 10.1016/j.ejor.2013.10.067.![]() ![]() |
[23] |
K. Khalili-Damghani, M. Tavana and E. Haji-Saami, A data envelopment analysis model with interval data and undesirable output for combined cycle power plant performance assessment, Expert Systems with Applications, 42 (2015), 760-773.
doi: 10.1016/j.eswa.2014.08.028.![]() ![]() |
[24] |
T. Kuosmanen and R. K. Matin, Theory of integer-valued data envelopment analysis, European Journal of Operational Research, 192 (2009), 658-667.
doi: 10.1016/j.ejor.2007.09.040.![]() ![]() ![]() |
[25] |
K. Li and M. Song, Green development performance in China: A metafrontier non-radial approach, Sustainability, 8 (2016), 219.
doi: 10.3390/su8030219.![]() ![]() |
[26] |
L. Li, X. Lv, W. Xu, Z. Zhang and X. Rong, Dynamic super-efficiency interval data envelopment analysis, in Computer Science & Education (ICCSE), 10th International Conference, IEEE, 2015.
![]() |
[27] |
R. Lin and Z. Chen, Super-efficiency measurement under variable return to scale: An approach based on a new directional distance function, Journal of the Operational Research Society, 66 (2015), 1506-1510.
doi: 10.1057/jors.2014.118.![]() ![]() |
[28] |
R. Lin and Z. Chen, A directional distance based super-efficiency DEA model handling negative data, Journal of the Operational Research Society, 68 (2017), 1312-1322.
doi: 10.1057/s41274-016-0137-8.![]() ![]() |
[29] |
S. Lozano and G. Villa, Centralized DEA models with the possibility of downsizing, Journal of the Operational Research Society, 56 (2005), 357-364.
doi: 10.1057/palgrave.jors.2601838.![]() ![]() |
[30] |
S. Lozano and G. Villa, Data envelopment analysis of integer-valued inputs and outputs, Computers & Operations Research, 33 (2006), 3004-3014.
doi: 10.1016/j.cor.2005.02.031.![]() ![]() ![]() |
[31] |
F. B. Mariz, M. R. Almeida and D. Aloise, A review of dynamic data envelopment analysis: State of the art and applications, International Transactions in Operational Research, 25 (2018), 469-505.
doi: 10.1111/itor.12468.![]() ![]() ![]() |
[32] |
O. B. Olesen and N. C. Petersen, Stochastic data envelopment analysis–A review, European Journal of Operational Research, 251 (2016), 2-21.
doi: 10.1016/j.ejor.2015.07.058.![]() ![]() ![]() |
[33] |
H. Omrani and E. Soltanzadeh, Dynamic DEA models with network structure: An application for Iranian airlines, Journal of Air Transport Management, 57 (2016), 52-61.
doi: 10.1016/j.jairtraman.2016.07.014.![]() ![]() |
[34] |
M. C. A. S. Portela, E. Thanassoulis and G. Simpson, Negative data in DEA: A directional distance approach applied to bank branches, Journal of the Operational Research Society, 55 (2004), 1111-1121.
doi: 10.1057/palgrave.jors.2601768.![]() ![]() |
[35] |
R. R. Russell and W. Schworm, Technological inefficiency indexes: A binary taxonomy and a generic theorem, Journal of Productivity Analysis, 49 (2018), 17-23.
![]() |
[36] |
L. M. Seiford and J. Zhu, Infeasibility of super-efficiency data envelopment analysis models, INFOR: Information Systems and Operational Research, 37 (1999), 174-187.
doi: 10.1080/03155986.1999.11732379.![]() ![]() |
[37] |
L. M. Seiford and J. Zhu, Modeling undesirable factors in efficiency evaluation, European Journal of Operational Research, 142 (2002), 16-20.
doi: 10.1016/S0377-2217(01)00293-4.![]() ![]() |
[38] |
J. K. Sengupta, Stochastic data envelopment analysis: A new approach, Applied Economics Letters, 5 (1998), 287-290.
doi: 10.1002/(SICI)1099-0747(199603)12:1<1::AID-ASM274>3.0.CO;2-Y.![]() ![]() |
[39] |
Y. G. Smirlis, E. K. Maragos and D. K. Despotis, Data envelopment analysis with missing values: An interval DEA approach, Applied Mathematics and Computation, 177 (2006), 1-10.
doi: 10.1016/j.amc.2005.10.028.![]() ![]() ![]() |
[40] |
J. Sun, Y. Miao, J. Wu, L. Cui and R. Zhong, Improved interval DEA models with common weight, Kybernetika, 50 (2014), 774-785.
doi: 10.14736/kyb-2014-5-0774.![]() ![]() ![]() |
[41] |
Y. Tan, U. Shetty, A. Diabat and T. P. M. Pakkala, Aggregate directional distance formulation of DEA with integer variables, Annals of Operations Research, 235 (2015), 741-756.
doi: 10.1007/s10479-015-1891-8.![]() ![]() ![]() |
[42] |
M. Toloo, N. Aghayi and M. Rostamy-Malkhalifeh, Measuring overall profit efficiency with interval data, Applied Mathematics and Computation, 201 (2008), 640-649.
doi: 10.1016/j.amc.2007.12.061.![]() ![]() ![]() |
[43] |
K. Tone, A slacks-based measure of efficiency in data envelopment analysis, European Journal of Operational Research, 130 (2001), 498-509.
doi: 10.1016/S0377-2217(99)00407-5.![]() ![]() ![]() |
[44] |
K. Tone and M. Tsutsui, Dynamic DEA: A slacks-based measure approach, Omega, 38 (2010), 145-156.
doi: 10.1016/j.omega.2009.07.003.![]() ![]() |
[45] |
T. H. Tran, Y. Mao, P. Nathanail, P. O. Siebers and D. Robinson, Integrating slacks-based measure of efficiency and super-efficiency in data envelopment analysis, Omega, 85 (2019), 156-165.
doi: 10.1016/j.omega.2018.06.008.![]() ![]() |
[46] |
Y.-M. Wang, R. Greatbanks and J.-B. Yang, Interval efficiency assessment using data envelopment analysis, Fuzzy Sets and Systems, 153 (2005), 347-370.
doi: 10.1016/j.fss.2004.12.011.![]() ![]() ![]() |
[47] |
Z. S. Xu and Q. L. Da, Possibility degree method for ranking interval numbers and its application, Journal of Systems Engineering, 18 (2003), 67-70.
![]() |
[48] |
Z. Yang, D. K. J. Lin and A. Zhang, Interval-valued data prediction via regularized artificial neural network, Neurocomputing, 331 (2019), 336-345.
doi: 10.1016/j.neucom.2018.11.063.![]() ![]() |
[49] |
S.-H. Yu and C.-W. Hsu, A unified extension of super-efficiency in additive data envelopment analysis with integer-valued inputs and outputs: An application to a municipal bus system, Annals of Operations Research, 287 (2020), 515-535.
doi: 10.1007/s10479-019-03448-z.![]() ![]() ![]() |
[50] |
A. Zanella, A. S. Camanho and T. G. Dias, Undesirable outputs and weighting schemes in composite indicators based on data envelopment analysis, European Journal of Operational Research, 245 (2015), 517-530.
doi: 10.1016/j.ejor.2015.03.036.![]() ![]() ![]() |
The dynamic framework for a DMU comprising of
2a and 2b describe the upper and lower bounds respectively of efficient frontiers for DMUs
The dynamic structure of an airline in two consecutive periods