\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

CCR model-based evaluation on the effectiveness and maturity of technological innovation

  • * Corresponding author: Liling Lin and Linfeng Zhao

    * Corresponding author: Liling Lin and Linfeng Zhao 
Abstract Full Text(HTML) Figure(0) / Table(7) Related Papers Cited by
  • As there are many indexes for evaluating technological innovation in enterprises, it is hard to quantify all those indexes. Therefore, common evaluation methods cannot be applied to solve the absolute value of the evaluation indexes. Therefore, this study used the nonparametric CCR model based on input-output to estimate the relative value of evaluation index, and took dual programming tool to obtain the judgment basis for the most effective and optimal solution. Based on the software evaluation criteria, this paper proposed the concept of "maturity in technological innovation, " its four levels, and an evaluation standard for maturity. Based on the homogeneity, the paper selected four Beijing enterprises as evaluation samples. After comparing and analyzing the efficiency, scale return, production surface projection and maturity, we found that the evaluation results conform to the reality of sampling enterprises. CCR model was used to evaluate decision-making units with multiple inputs and outputs. The results show that this method can help accurately obtain the relative order and the enterprises' ability to make technological innovation. Thus, CCR model is able to help enterprises formulate policies on technological innovation.

    Mathematics Subject Classification: Primary 91B06, 91B38; Secondary 90B50, 90B30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Input and output of evaluation departments

    No. Weight Decision-making unit
    1 2 ... j ... n
    Input data 1 $ v_{1} $ $ x_{11} $ $ x_{12} $ ... $ x_{1j} $ ... $ x_{1n} $
    2 $ v_{2} $ $ x_{21} $ $ x_{22} $ ... $ x_{2j} $ ... $ x_{2n} $
    ... ... ... ...
    $ m $ $ v_{m} $ $ x_{m1} $ $ x_{m2} $ ... $ x_{mj} $ ... $ x_{mn} $
    Output data 1 $ u_{1} $ $ y_{11} $ $ y_{12} $ ... $ y_{1j} $ ... $ y_{1n} $
    2 $ u_{2} $ $ y_{21} $ $ y_{22} $ ... $ y_{2j} $ ... $ y_{2n} $
    ... ... ... ...
    $ s $ $ u_{s} $ $ y_{s1} $ $ y_{s2} $ ... $ y_{sj} $ ... $ y_{sn} $
     | Show Table
    DownLoad: CSV

    Table 2.  Data of sample enterprises

    Enter-prises Years R & D funds/product sales revenue (A13) (%)x1 Number of full-time R&D personnel /number of employees (A22) (%)x2 Technology introduction and transformation cost/ product sales revenue (A31) (%)x3 Annual per capita income of R&D personnel /annual per capita income of enterprises (B21) X4 Innovation strategy (B11) X5 Technical level (C11) x6 Number of patents and proprietary technology (C41) x7 Equipment level (D11) x8 Marketing costs for new products /new product sales revenue (E32) (%) x9 Number of full -time sales personnel/ number of employees (E42) x10 New product sales revenue /total product sales revenue (F12) (%) Y1
    Enterprise I 01 3.14 13.85 5.38 1.01 75 1 15 0.8 3.81 0.24 24.94
    02 3.37 14.31 3.84 1.01 80 1 15 0.8 5.47 0.25 36.04
    03 3.65 15.98 6.43 1.11 80 1 15 0.8 6.34 0.26 35.51
    04 5.05 17.44 1.1 1.1 85 1 15 0.8 4.29 0.27 35.27
    05 5.21 19.19 1.4 1.07 90 1 15 0.8 3.11 0.29 35.35
    Enterprise II 01 3.47 14.33 19.69 1.21 70 0.4 9 0.6 20 0.19 7.3
    02 4.24 14.51 26.63 1.32 70 0.4 9 0.6 27.91 0.2 8.12
    03 4.55 14.63 35.06 1.05 70 0.4 9 0.6 34.12 0.22 11.17
    04 3.37 15.66 4.84 1.12 70 0.4 10 0.6 32.12 0.22 13.36
    05 3.13 16.05 3.2 1.19 70 0.6 10 0.6 29.66 0.22 13
    Enterprise III 01 9.1 7.11 3.17 1.51 80 0.6 6 0.4 13.55 0.1 2.16
    02 10.94 7.23 4.66 1.62 80 0.6 6 0.4 14.21 0.1 2.22
    03 29.66 7.39 2.65 1.68 80 0.6 6 0.4 15.33 0.1 3.27
    04 20.91 7.43 3.05 1.65 80 0.6 6 0.4 17.17 0.1 4.68
    05 15.66 7.51 0.74 1.69 80 0.6 6 0.4 15.61 0.1 4.95
    Enterprise III 01 2.96 22 21.45 1.22 70 0.4 5 0.4 13.23 0.3 8.085
    02 3.36 25 0.48 1.52 70 0.4 5 0.4 8.07 0.3 10.01
    03 3.52 21 0.76 1.4 75 0.4 5 0.4 7.13 0.3 15.575
    04 4.36 29 3.35 1.29 80 0.4 5 0.4 3.9 0.3 22.14
    05 7.47 27 2.35 1.06 80 0.4 5 0.4 2.38 0.3 25.69
     | Show Table
    DownLoad: CSV

    Table 3.  Definition of input and output indicators

    Types Names Code Definition Unit
    Enterprise III X1 A13 R & D funds / product sales revenue %
    X2 A22 Number of full-time R & D personnel / number of employees %
    X3 A31 Technology introduction and transformation cost / product sales revenue %
    X4 B21 Annual per capita income of R & D personnel/ annual per capita income of enterprises %
    X5 B11 Innovation strategy Point
    X6 C11 Technical level= 1 × international level + 0.6 × domestic level + 0.3 × enterprise level
    X7 C41 Number of patents and proprietary technology Piece
    X8 D11 Equipment level = 1 × international advanced level (%) + 0.8 × international general level (%) + 0.6 × domestic advanced level (%) + 0.4 × domestic general level (%) + 0.2 × others
    X9 E32 Marketing costs for new products/new product sales revenue %
    X10 E42 Number of full-time sales personnel/ number of employees
    Output variable Y1 F12 New product sales revenue/total product sales revenue %
     | Show Table
    DownLoad: CSV

    Table 4.  Optimal solution and relaxation variables

    Enterprises Year $ \theta $ $ S1^{-} $ $ S2^{-} $ $ S3^{-} $ $ S4^{-} $ $ S5^{-} $ $ S6^{-} $ $ S7^{-} $ $ S8^{-} $ $ S9^{-} $ $ S10^{-} $ $ S1^{+} $
    Enterprise 1 01 0.8696334 0 1.06315 2.51657 0.16280 7.44845 0.17362 2.60427 0.13889 0 0.02634 0
    02 1.000000 0 0 0 0 0 0 0 0 0 0 0
    03 0.9852941 0.27588 1.64544 2.55191 0.09853 0 0 0 0 0.85721 0.00985 0
    04 1.000000 0 0 0 0 0 0 0 0 0 0 0
    05 1.000000 0 0 0 0 0 0 0 0 0 0 0
    Enterprise 2 01 0.3938900 0 0 6.98602 0.20658 7.49104 0 1.33744 0.09783 6.92850 0.00430 0
    02 0.4257631 0.15493 0 10.54098 0.27466 7.73962 0 1.45311 0.10515 10.91772 0.00741 0
    03 0.5837402 0.37323 0 19.37040 0.21680 10.45333 0 1.99557 0.14390 18.59308 0.02118 0
    04 0.7169654 0 0 1.94594 0.26629 11.90772 0 3.18738 0.17519 21.15136 0.02213 0
    05 0.5354496 0 0 0.18736 0.16405 3.44490 0 0.70910 0.05036 13.86115 0.00275 0
    Enterprise 3 01 0.1498335 1.16151 0.20767 0.24483 0.16572 7.19201 0.02997 0 0.01199 1.70241 0 0
    02 0.1539956 1.47713 0.23192 0.48108 0.18726 7.39179 0.03080 0 0.01232 1.85134 0 0
    03 0.2268313 6.42205 0.37790 0.25269 0.28944 10.88790 0.04537 0 0.01815 2.98102 0 0
    04 0.3246393 6.35059 0.55383 0.49150 0.40450 15.58269 0.06493 0 0.02597 4.86375 0 0
    05 0.3677099 5.12719 0.46604 0 0.47199 17.78455 0.08123 0.11527 0.03556 5.09078 0 0
    Enterprise 4 01 0.4552423 0 1.58449 8.64749 0.15586 5.94956 0.01313 0 0.02625 4.65633 0.04266 0
    02 0.7785724 0.89338 11.53132 0 0.66614 21.97158 0.03695 0 0.07390 3.89102 0.11639 0
    03 1.000000 0 0 0 0 0 0 0 0 0 0 0
    04 1.000000 0 0 0 0 0 0 0 0 0 0 0
    05 1.000000 0 0 0 0 0 0 0 0 0 0 0
     | Show Table
    DownLoad: CSV

    Table 5.  Maturity of technological innovation of sample enterprises

    Enterprises Year DEA optimal solution Technological innovation maturity
    Enterprise 1 2014 0.8696334 Less maturity
    2015 1.000000 Full maturity
    2016 0.9852941 Less maturity
    2017 1.000000 Full maturity
    2018 1.000000 Full maturity
    Enterprise 2 2014 0.39389 Immaturity
    2015 0.425763 Immaturity
    2016 0.58374 Less maturity
    2017 0.716965 Less maturity
    2018 0.53545 Less maturity
    Enterprise 3 2014 0.149834 Immaturity
    2015 0.153996 Immaturity
    2016 0.226831 Immaturity
    2017 0.324639 Immaturity
    2018 0.36771 Immaturity
    Enterprise 4 2014 0.455242 Immaturity
    2015 0.778572 Less maturity
    2016 1.000000 Full maturity
    2017 1.000000 Full maturity
    2018 1.000000 Full maturity
     | Show Table
    DownLoad: CSV

    Table 6.  Adjustment range of evaluation indexes of enterprise 1

    Types Names Definition Change in value (unit) Adjusted values (unit)
    Input variables X1 R & D funds/product sales revenue -0.409351124 (%) 2.730648876 (%)
    X2 Number of full-time R & D personnel/ number of employees -2.86872741 (%) 10.98127259 (%)
    X3 Technology introduction and transformation cost / product sales revenue -3.217942308 (%) 2.162057692 (%)
    X4 Annual per capita income of R & D personnel / annual per capita income of enterprises -0.294470266 (%) 0.715529734 (%)
    X5 Innovation strategy -17.225945 (Score) 57.774055 (Score)
    X6 Technical level -0.3039866 0.6960134
    X7 Number of patents and proprietary technology -4.559769 10.440231
    X8 Equipment level -0.24318328 0.55681672
    X9 Marketing costs for new products / new product sales revenue -0.496696746 (%) 3.313303254 (%)
    X10 Number of full-time sales personnel / number of employees -0.057627984 0.182372016
    Output variable Y1 New product sales revenue / total product sales revenue 0 (%) 24.94
     | Show Table
    DownLoad: CSV

    Table 7.  Variable adjustment of enterprise 1

    Enterprise Year Value X Y
    X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y1
    I 01 S 0 1.06315 2.51657 0.1628 7.44845 0.17362 2.60427 0.13889 0 0.02634 0
    T1 3.14 13.85 5.38 1.01 75 1 15 0.8 3.81 0.24 24.94
    T2 2.730648876 10.98127259 2.162057692 0.715529734 57.774055 0.6960134 10.440231 0.55681672 3.313303254 0.182372016 24.94
    C 0.409351124 2.86872741 3.217942308 0.294470266 17.225945 0.3039866 4.559769 0.24318328 0.496696746 0.057627984 0
    02 S 0 0 0 0 0 0 0 0 0 0 0
    T1 3.37 14.31 3.84 1.01 80 1 15 0.8 5.47 0.25 36.04
    T2 3.37 14.31 3.84 1.01 80 1 15 0.8 5.47 0.25 36.04
    C 0 0 0 0 0 0 0 0 0 0 0
    03 S 0.27588 1.64544 2.55191 0.09853 0 0 0 0 0.85721 0.00985 0
    T1 3.65 15.98 6.43 1.11 80 1 15 0.8 6.34 0.26 35.51
    T2 3.320443465 14.09955972 3.783531063 0.995146451 78.823528 0.9852941 14.7794115 0.78823528 5.389554594 0.246326466 35.51
    C 0.329556535 1.880440282 2.646468937 0.114853549 1.176472 0.0147059 0.2205885 0.01176472 0.950445406 0.013673534 0
    04 S 0 0 0 0 0 0 0 0 0 0 0
    T1 5.05 17.44 1.1 1.1 85 1 15 0.8 4.29 0.27 35.27
    T2 5.05 17.44 1.1 1.1 85 1 15 0.8 4.29 0.27 35.27
    C 0 0 0 0 0 0 0 0 0 0 0
    05 S 0 0 0 0 0 0 0 0 0 0 0
    T1 5.21 19.19 1.4 1.07 90 1 15 0.8 3.11 0.29 35.35
    T2 5.21 19.19 1.4 1.07 90 1 15 0.8 3.11 0.29 35.35
    C 0 0 0 0 0 0 0 0 0 0 0
    Note: in the table, S represents slack variable; T1 refers to variable value before adjustment; T2 means variable value after adjustment; and C represents difference.
     | Show Table
    DownLoad: CSV
  • [1] F. T. Akyildiz and K. Vajravelu, Galerkin-chebyshev pseudo spectral method and a split step new approach for a class of two dimensional semi-linear parabolic equations of second order, Applied Mathematics and Nonlinear Sciences, 3 (2018), 255-264.  doi: 10.21042/AMNS.2018.1.00019.
    [2] E. Bohlool and T. Mehdi, Efficiency bounds and efficiency classifications in imprecise DEA: An extension, Journal of the Operational Research Society, 7 (2019), 30-35. 
    [3] M. Idi and B. M. Aliyu, Cyber security capability maturity model for network system, International Journal of Development Research, 6 (2019), 37-41. 
    [4] X. LiuC-W. Ni and L-Y. Zhang, Durability assessment of lightweight cellular concrete in sub-grade by the method of analytic hierarchy process combined with fuzzy comprehensive evaluation, Mathematical Problems in Engineering, 2019 (2019), 1-10. 
    [5] J-C. Lu and G- W Han, Osculating value method of business technology innovation capacity evaluation, Science Research Management, 1 (2002), 54-57. 
    [6] T. MadjidK-D. KavehS. A. J. Francisco and H. Amineh, A fuzzy multi-objective multi-period network DEA model for efficiency measurement in oil refineries, Computers and Industrial Engineering, 9 (2019), 143-155. 
    [7] R. T. MdN. Rasmus and K. A. Md, Efficiency and production environmental heterogeneity in aquaculture: A meta-frontier DEA approach, Aquaculture, 6 (2019), 140-148. 
    [8] L. Nils and S. Alexander, Modeling time-dependent randomness in stochastic dual dynamic programming, European Journal of Operational Research, 2 (2019), 650-661. 
    [9] L. L. Pan and L. X. Sun, Modeling time-dependent randomness in stochastic dual dynamic programming, Science and Technology Management Research, 7 (2019), 32-37. 
    [10] C. Rojas and J. Belmonte-Beitia, Optimal control problems for differential equations applied to tumor growth: State of the art, Applied Mathematicsand Nonlinear Sciences, 3 (2018), 375-402.  doi: 10.21042/AMNS.2018.2.00029.
    [11] Y-Z. Tang and S-G. Zhou, Grey synthetic evaluation of enterprise' technological innovation capacity, Science and Technology Progress and Policy, 5 (1999), 46-81. 
    [12] Yokus and Gülbahar, Numerical solutions with linearization techniques of the fractional harry dym equation, Applied Mathematicsand Nonlinear Sciences, 4 (2018), 35-42.  doi: 10.2478/AMNS.2019.1.00004.
    [13] L-F. ZhaoX. ZhouY. Du and L-D. Tan, DEA comprehensive evaluation on enterprise's technology innovation capacity, China Science Forum, 6 (2007), 49-52. 
    [14] Y-P. Zhou, Neural network experience analysis on enterprise technological innovation ability, Science and Technology Progress and Policy, 17 (2000), 62-63. 
  • 加载中

Tables(7)

SHARE

Article Metrics

HTML views(876) PDF downloads(395) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return