
-
Previous Article
Can the reform of green credit policy promote enterprise eco-innovation? A theoretical analysis
- JIMO Home
- This Issue
-
Next Article
CCR model-based evaluation on the effectiveness and maturity of technological innovation
Optimizing micro-algae production in a raceway pond with variable depth
School of Electrical Engineering, Computing, and Mathematical Sciences, Curtin University, Kent Street, Bentley, Perth, Western Australia, 6102 |
We present a modified model of algae growth in a raceway pond with the additional feature of variable pond depth. This requires an additional state variable to model depth as well as additional control to allow for variable outflow. We apply numerical optimal control methods to this model and show that the lipid yield of the process can be increased by 67% compared to that obtained with a fixed pond depth.
References:
[1] |
Q. Béchet, A. Shilton and B. Guieysse,
Maximizing productivity and reducing environmental impacts of full-scale algal production through optimization of open pond depth and hydraulic retention time, Environmental Science & Technology, 50 (2016), 4102-4110.
|
[2] |
M. A. Borowitzka, Energy from microalgae: A short history, in Algae for Biofuels and Energy (ed. M. A. Borowitzka), 5, Springer, 2013, 1–15.
doi: 10.1007/978-94-007-5479-9_1. |
[3] |
M. A. Borowitzka and N. R. Moheimani, Algae for Biofuels and Energy, 5, Springer, 2013. |
[4] |
M. A. Borowitzka and N. R. Moheimani, Open pond culture systems, in Algae for Biofuels and Energy (ed. M. A. Borowitzka), 5, Springer, 2013,133–152.
doi: 10.1007/978-94-007-5479-9_8. |
[5] |
K. E. Brenan, S. L. Campbell and L. R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, 14, Siam, 1996. |
[6] |
C. Büskens, Optimierungsmethoden und sensitivitatsanalyse fur optimale steuerprozesse mit steuer-und zustands-beschrankungen, Westfalische Wilhelms-Universitat Munster. |
[7] |
P. H. Chen and W. J. Oswald,
Thermochemical treatment for algal fermentation, Environment International, 24 (1998), 889-897.
doi: 10.1016/S0160-4120(98)00080-4. |
[8] |
R. J. Craggs, T. J. Lundquist and J. R. Benemann, Wastewater Treatment and Algal Biofuel Production, 5, Springer, 2013,153–163. |
[9] |
M. D. R. De Pinho, I. Kornienko and H. Maurer, Optimal control of a SEIR model with mixed constraints and L1 cost, in CONTROLO'2014–Proceedings of the 11th Portuguese Conference on Automatic Control, Springer, 135–145.
doi: 10.1007/978-3-319-10380-8_14. |
[10] |
R. Fourer, D. Gay and B. Kernighan, Ampl: A modeling language for mathematical programming, Duxbury Press. |
[11] |
T. Hurst and V. Rehbock,
Optimal control for micro-algae on a raceway model, Biotechnology progress, 34 (2018), 107-119.
|
[12] |
S. C. James and V. Boriah,
Modeling algae growth in an open-channel raceway, Journal of Computational Biology, 17 (2010), 895-906.
doi: 10.1089/cmb.2009.0078. |
[13] |
L. S. Jennings, M. Fisher, K. L. Teo and C. Goh, MISER 3: Optimal Control Software, Version 2.0. Theory and User Manual, Dept. of Mathematics, University of Western Australia, Nedlands, 2002. |
[14] |
L. S. Jennings, K. L. Teo, V. Rehbock and W. X. Zheng,
Optimal control of singular systems with a cost on changing control, Dynamics and Control, 6 (1996), 63-89.
doi: 10.1007/BF02169462. |
[15] |
B.-H. Kim, J.-E. Choi, K. Cho, Z. Kang, R. Ramanan, D.-G. Moon and H.-S. Kim,
Influence of water depth on microalgal production, biomass harvest, and energy consumption in high rate algal pond using municipal wastewater, J. Microbiol. Biotechnol., 28 (2018), 630-637.
doi: 10.4014/jmb.1801.01014. |
[16] |
F. Mairet, O. Bernard, T. Lacour and A. Sciandra,
Modelling microalgae growth in nitrogen limited photobiorector for estimating biomass, carbohydrate and neutral lipid productivities, IFAC Proceedings Volumes, 44 (2011), 10591-10596.
doi: 10.3182/20110828-6-IT-1002.03165. |
[17] |
H. Maurer, J.-H. R. Kim and G. Vossen, On a state-constrained control problem in optimal production and maintenance, Optimal Control and Dynamic Games, Springer, 2005,289–308. |
[18] |
A. Meurer, et al., Sympy: Symbolic computing in python, PeerJ Computer Science, 3 (2017), e103.
doi: 10.7717/peerj-cs.103. |
[19] |
R. Muñoz-Tamayo, F. Mairet and O. Bernard,
Optimizing microalgal production in raceway systems, Biotechnology Progress, 29 (2013), 543-552.
|
[20] |
A. K. Pegallapati and N. Nirmalakhandan,
Modeling algal growth in bubble columns under sparging with $\text{CO}_2$-enriched air, Bioresource Technology, 124 (2012), 137-145.
|
[21] |
L. Pontryagin, V. Boltyanskii, R. Gamkrelidze and E. Mischenko, The mathematical theory of optimal processes, Wiley Interscience, New York. |
[22] |
R. Pytlak and T. Zawadzki,
On solving optimal control problems with higher index differential-algebraic equations, Optimization Methods and Software, 29 (2014), 1139-1162.
doi: 10.1080/10556788.2014.892597. |
[23] |
J. Quinn, L. De Winter and T. Bradley,
Microalgae bulk growth model with application to industrial scale systems, Bioresource Technology, 102 (2011), 5083-5092.
doi: 10.1016/j.biortech.2011.01.019. |
[24] |
S. Sawant, H. Khadamkar, C. Mathpati, R. Pandit and A. Lali,
Computational and experimental studies of high depth algal raceway pond photo-bioreactor, Renewable Energy, 118 (2018), 152-159.
doi: 10.1016/j.renene.2017.11.015. |
[25] |
A. Wächter and L. T. Biegler,
On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006), 25-57.
doi: 10.1007/s10107-004-0559-y. |
[26] |
P. J. L. B. Williams and L. M. Laurens,
Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics, Energy & Environmental Science, 3 (2010), 554-590.
doi: 10.1039/b924978h. |
[27] |
G. C. Zittelli, L. Rodolfi, N. Bassi, N. Biondi and M. R. Tredici, Photobioreactors for microalgal biofuel production, in Algae for biofuels and energy (ed. M. A. Borowitzka), 5, Springer, 2013, 115-131.
doi: 10.1007/978-94-007-5479-9_7. |
show all references
References:
[1] |
Q. Béchet, A. Shilton and B. Guieysse,
Maximizing productivity and reducing environmental impacts of full-scale algal production through optimization of open pond depth and hydraulic retention time, Environmental Science & Technology, 50 (2016), 4102-4110.
|
[2] |
M. A. Borowitzka, Energy from microalgae: A short history, in Algae for Biofuels and Energy (ed. M. A. Borowitzka), 5, Springer, 2013, 1–15.
doi: 10.1007/978-94-007-5479-9_1. |
[3] |
M. A. Borowitzka and N. R. Moheimani, Algae for Biofuels and Energy, 5, Springer, 2013. |
[4] |
M. A. Borowitzka and N. R. Moheimani, Open pond culture systems, in Algae for Biofuels and Energy (ed. M. A. Borowitzka), 5, Springer, 2013,133–152.
doi: 10.1007/978-94-007-5479-9_8. |
[5] |
K. E. Brenan, S. L. Campbell and L. R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, 14, Siam, 1996. |
[6] |
C. Büskens, Optimierungsmethoden und sensitivitatsanalyse fur optimale steuerprozesse mit steuer-und zustands-beschrankungen, Westfalische Wilhelms-Universitat Munster. |
[7] |
P. H. Chen and W. J. Oswald,
Thermochemical treatment for algal fermentation, Environment International, 24 (1998), 889-897.
doi: 10.1016/S0160-4120(98)00080-4. |
[8] |
R. J. Craggs, T. J. Lundquist and J. R. Benemann, Wastewater Treatment and Algal Biofuel Production, 5, Springer, 2013,153–163. |
[9] |
M. D. R. De Pinho, I. Kornienko and H. Maurer, Optimal control of a SEIR model with mixed constraints and L1 cost, in CONTROLO'2014–Proceedings of the 11th Portuguese Conference on Automatic Control, Springer, 135–145.
doi: 10.1007/978-3-319-10380-8_14. |
[10] |
R. Fourer, D. Gay and B. Kernighan, Ampl: A modeling language for mathematical programming, Duxbury Press. |
[11] |
T. Hurst and V. Rehbock,
Optimal control for micro-algae on a raceway model, Biotechnology progress, 34 (2018), 107-119.
|
[12] |
S. C. James and V. Boriah,
Modeling algae growth in an open-channel raceway, Journal of Computational Biology, 17 (2010), 895-906.
doi: 10.1089/cmb.2009.0078. |
[13] |
L. S. Jennings, M. Fisher, K. L. Teo and C. Goh, MISER 3: Optimal Control Software, Version 2.0. Theory and User Manual, Dept. of Mathematics, University of Western Australia, Nedlands, 2002. |
[14] |
L. S. Jennings, K. L. Teo, V. Rehbock and W. X. Zheng,
Optimal control of singular systems with a cost on changing control, Dynamics and Control, 6 (1996), 63-89.
doi: 10.1007/BF02169462. |
[15] |
B.-H. Kim, J.-E. Choi, K. Cho, Z. Kang, R. Ramanan, D.-G. Moon and H.-S. Kim,
Influence of water depth on microalgal production, biomass harvest, and energy consumption in high rate algal pond using municipal wastewater, J. Microbiol. Biotechnol., 28 (2018), 630-637.
doi: 10.4014/jmb.1801.01014. |
[16] |
F. Mairet, O. Bernard, T. Lacour and A. Sciandra,
Modelling microalgae growth in nitrogen limited photobiorector for estimating biomass, carbohydrate and neutral lipid productivities, IFAC Proceedings Volumes, 44 (2011), 10591-10596.
doi: 10.3182/20110828-6-IT-1002.03165. |
[17] |
H. Maurer, J.-H. R. Kim and G. Vossen, On a state-constrained control problem in optimal production and maintenance, Optimal Control and Dynamic Games, Springer, 2005,289–308. |
[18] |
A. Meurer, et al., Sympy: Symbolic computing in python, PeerJ Computer Science, 3 (2017), e103.
doi: 10.7717/peerj-cs.103. |
[19] |
R. Muñoz-Tamayo, F. Mairet and O. Bernard,
Optimizing microalgal production in raceway systems, Biotechnology Progress, 29 (2013), 543-552.
|
[20] |
A. K. Pegallapati and N. Nirmalakhandan,
Modeling algal growth in bubble columns under sparging with $\text{CO}_2$-enriched air, Bioresource Technology, 124 (2012), 137-145.
|
[21] |
L. Pontryagin, V. Boltyanskii, R. Gamkrelidze and E. Mischenko, The mathematical theory of optimal processes, Wiley Interscience, New York. |
[22] |
R. Pytlak and T. Zawadzki,
On solving optimal control problems with higher index differential-algebraic equations, Optimization Methods and Software, 29 (2014), 1139-1162.
doi: 10.1080/10556788.2014.892597. |
[23] |
J. Quinn, L. De Winter and T. Bradley,
Microalgae bulk growth model with application to industrial scale systems, Bioresource Technology, 102 (2011), 5083-5092.
doi: 10.1016/j.biortech.2011.01.019. |
[24] |
S. Sawant, H. Khadamkar, C. Mathpati, R. Pandit and A. Lali,
Computational and experimental studies of high depth algal raceway pond photo-bioreactor, Renewable Energy, 118 (2018), 152-159.
doi: 10.1016/j.renene.2017.11.015. |
[25] |
A. Wächter and L. T. Biegler,
On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006), 25-57.
doi: 10.1007/s10107-004-0559-y. |
[26] |
P. J. L. B. Williams and L. M. Laurens,
Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics, Energy & Environmental Science, 3 (2010), 554-590.
doi: 10.1039/b924978h. |
[27] |
G. C. Zittelli, L. Rodolfi, N. Bassi, N. Biondi and M. R. Tredici, Photobioreactors for microalgal biofuel production, in Algae for biofuels and energy (ed. M. A. Borowitzka), 5, Springer, 2013, 115-131.
doi: 10.1007/978-94-007-5479-9_7. |







Variables | Definition | Units |
Nitrogen concentration | gN |
|
Nitrogen quota | gN |
|
Carbon biomass concentration | gC |
|
Lipid carbon concentration | gC |
|
Functional carbon concentration | gC |
|
Pond depth | ||
Average light intensity | μmol photons |
|
Chlorophyll concentration | g |
|
Incident light intensity | μmol photons |
|
Raceway temperature | ℃ | |
Temperature factor affecting growth kinetics | ||
Optical depth | ||
Growth rate | ||
Nitrogen uptake rate | gN |
|
Chl:N ratio | g |
|
Attenuation factor | ||
Overall respiration rate | ||
Feeding flow rate | ||
Extraction flow rate | ||
Efficiency of light absorption | ||
final time point | h |
Variables | Definition | Units |
Nitrogen concentration | gN |
|
Nitrogen quota | gN |
|
Carbon biomass concentration | gC |
|
Lipid carbon concentration | gC |
|
Functional carbon concentration | gC |
|
Pond depth | ||
Average light intensity | μmol photons |
|
Chlorophyll concentration | g |
|
Incident light intensity | μmol photons |
|
Raceway temperature | ℃ | |
Temperature factor affecting growth kinetics | ||
Optical depth | ||
Growth rate | ||
Nitrogen uptake rate | gN |
|
Chl:N ratio | g |
|
Attenuation factor | ||
Overall respiration rate | ||
Feeding flow rate | ||
Extraction flow rate | ||
Efficiency of light absorption | ||
final time point | h |
Parameters | Definition | Units | Value |
Protein synthesis coefficient | gC |
3.0 | |
Fatty acid synthesis coefficient | gC |
3.80 | |
Dissociation light constant | μmol photons |
50 | |
Biosynthesis cost coefficient | gC |
1.30 | |
Fatty acid mobilization coefficient | gC |
2.90 | |
Reduction factor of nitrogen uptake during night | 0.19 | ||
Theoretical maximum specific growth rate | |||
Maximum uptake rate | gC |
||
Light attenuation due to chlorophyll | 2.0 | ||
Light attenuation due to background turbidity | 0.087 | ||
Coefficient (7) | gN |
16.74 | |
Coefficient (7) | gN |
0.39 | |
Coefficient (7) | gN (g |
||
Coefficient (7) | 0.0015 | ||
Nitrogen saturation constant | gN |
0.018 | |
Light saturation constant | μmol photons |
||
Hill coefficient | 3.0 | ||
Saturation cell quota | gN |
0.20 | |
Minimum nitrogen cell quota | gN |
0.05 | |
Maintenance respiration rate | |||
Lower temperature for micro-algae growth | -0.20 | ||
Upper temperature for micro-algae growth | 33.30 | ||
Temperature at which growth rate is maximal | 26.70 | ||
Influent nitrogen concentration | gN |
50.0 | |
Coefficient (2) | -5.75 | ||
Coefficient (2) | 20.75 | ||
time point | h | 3.733 | |
time point | h | 4.9 | |
time point | h | 19.1 | |
time point | h | 20.267 | |
Coefficient (3) | μmol photons |
-3.890408560 | |
Coefficient (3) | μmol photons |
-52.13043162 | |
Coefficient (3) | μmol photons |
141.6278134 | |
Coefficient (3) | μmol photons |
841.1792340 | |
Coefficient (3) | μmol photons |
358.8207660 | |
Coefficient (3) | μmol photons |
3.890411835 | |
Coefficient (3) | μmol photons |
-52.13042142 | |
Coefficient (3) | μmol photons |
-141.6278049 |
Parameters | Definition | Units | Value |
Protein synthesis coefficient | gC |
3.0 | |
Fatty acid synthesis coefficient | gC |
3.80 | |
Dissociation light constant | μmol photons |
50 | |
Biosynthesis cost coefficient | gC |
1.30 | |
Fatty acid mobilization coefficient | gC |
2.90 | |
Reduction factor of nitrogen uptake during night | 0.19 | ||
Theoretical maximum specific growth rate | |||
Maximum uptake rate | gC |
||
Light attenuation due to chlorophyll | 2.0 | ||
Light attenuation due to background turbidity | 0.087 | ||
Coefficient (7) | gN |
16.74 | |
Coefficient (7) | gN |
0.39 | |
Coefficient (7) | gN (g |
||
Coefficient (7) | 0.0015 | ||
Nitrogen saturation constant | gN |
0.018 | |
Light saturation constant | μmol photons |
||
Hill coefficient | 3.0 | ||
Saturation cell quota | gN |
0.20 | |
Minimum nitrogen cell quota | gN |
0.05 | |
Maintenance respiration rate | |||
Lower temperature for micro-algae growth | -0.20 | ||
Upper temperature for micro-algae growth | 33.30 | ||
Temperature at which growth rate is maximal | 26.70 | ||
Influent nitrogen concentration | gN |
50.0 | |
Coefficient (2) | -5.75 | ||
Coefficient (2) | 20.75 | ||
time point | h | 3.733 | |
time point | h | 4.9 | |
time point | h | 19.1 | |
time point | h | 20.267 | |
Coefficient (3) | μmol photons |
-3.890408560 | |
Coefficient (3) | μmol photons |
-52.13043162 | |
Coefficient (3) | μmol photons |
141.6278134 | |
Coefficient (3) | μmol photons |
841.1792340 | |
Coefficient (3) | μmol photons |
358.8207660 | |
Coefficient (3) | μmol photons |
3.890411835 | |
Coefficient (3) | μmol photons |
-52.13042142 | |
Coefficient (3) | μmol photons |
-141.6278049 |
[1] |
Bavo Langerock. Optimal control problems with variable endpoints. Conference Publications, 2003, 2003 (Special) : 507-516. doi: 10.3934/proc.2003.2003.507 |
[2] |
Valery Y. Glizer, Vladimir Turetsky, Emil Bashkansky. Statistical process control optimization with variable sampling interval and nonlinear expected loss. Journal of Industrial and Management Optimization, 2015, 11 (1) : 105-133. doi: 10.3934/jimo.2015.11.105 |
[3] |
Enkhbat Rentsen, J. Zhou, K. L. Teo. A global optimization approach to fractional optimal control. Journal of Industrial and Management Optimization, 2016, 12 (1) : 73-82. doi: 10.3934/jimo.2016.12.73 |
[4] |
Francesco Cordoni, Luca Di Persio. Optimal control for the stochastic FitzHugh-Nagumo model with recovery variable. Evolution Equations and Control Theory, 2018, 7 (4) : 571-585. doi: 10.3934/eect.2018027 |
[5] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial and Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[6] |
Andrei V. Dmitruk, Nikolai P. Osmolovskii. Necessary conditions for a weak minimum in optimal control problems with integral equations on a variable time interval. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4323-4343. doi: 10.3934/dcds.2015.35.4323 |
[7] |
Andrei V. Dmitruk, Nikolai P. Osmolovski. Necessary conditions for a weak minimum in a general optimal control problem with integral equations on a variable time interval. Mathematical Control and Related Fields, 2017, 7 (4) : 507-535. doi: 10.3934/mcrf.2017019 |
[8] |
Nasser H. Sweilam, Taghreed A. Assiri, Muner M. Abou Hasan. Optimal control problem of variable-order delay system of advertising procedure: Numerical treatment. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1247-1268. doi: 10.3934/dcdss.2021085 |
[9] |
Philip Trautmann, Boris Vexler, Alexander Zlotnik. Finite element error analysis for measure-valued optimal control problems governed by a 1D wave equation with variable coefficients. Mathematical Control and Related Fields, 2018, 8 (2) : 411-449. doi: 10.3934/mcrf.2018017 |
[10] |
Nguyen Thi Hoai. Asymptotic approximation to a solution of a singularly perturbed linear-quadratic optimal control problem with second-order linear ordinary differential equation of state variable. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 495-512. doi: 10.3934/naco.2020040 |
[11] |
Tan H. Cao, Boris S. Mordukhovich. Applications of optimal control of a nonconvex sweeping process to optimization of the planar crowd motion model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4191-4216. doi: 10.3934/dcdsb.2019078 |
[12] |
Marius Durea, Elena-Andreea Florea, Radu Strugariu. Henig proper efficiency in vector optimization with variable ordering structure. Journal of Industrial and Management Optimization, 2019, 15 (2) : 791-815. doi: 10.3934/jimo.2018071 |
[13] |
Ruxandra Stavre. Optimization of the blood pressure with the control in coefficients. Evolution Equations and Control Theory, 2020, 9 (1) : 131-151. doi: 10.3934/eect.2020019 |
[14] |
Dan Tiba. Implicit parametrizations and applications in optimization and control. Mathematical Control and Related Fields, 2020, 10 (3) : 455-470. doi: 10.3934/mcrf.2020006 |
[15] |
Thalya Burden, Jon Ernstberger, K. Renee Fister. Optimal control applied to immunotherapy. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 135-146. doi: 10.3934/dcdsb.2004.4.135 |
[16] |
Ellina Grigorieva, Evgenii Khailov. Optimal control of pollution stock. Conference Publications, 2011, 2011 (Special) : 578-588. doi: 10.3934/proc.2011.2011.578 |
[17] |
Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial and Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967 |
[18] |
Shaojun Lan, Yinghui Tang, Miaomiao Yu. System capacity optimization design and optimal threshold $N^{*}$ for a $GEO/G/1$ discrete-time queue with single server vacation and under the control of Min($N, V$)-policy. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1435-1464. doi: 10.3934/jimo.2016.12.1435 |
[19] |
Emile Franc Doungmo Goufo, Abdon Atangana. Dynamics of traveling waves of variable order hyperbolic Liouville equation: Regulation and control. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 645-662. doi: 10.3934/dcdss.2020035 |
[20] |
Sergei A. Avdonin, Boris P. Belinskiy. On the basis properties of the functions arising in the boundary control problem of a string with a variable tension. Conference Publications, 2005, 2005 (Special) : 40-49. doi: 10.3934/proc.2005.2005.40 |
2020 Impact Factor: 1.801
Tools
Article outline
Figures and Tables
[Back to Top]