[1]
|
Q. Béchet, A. Shilton and B. Guieysse, Maximizing productivity and reducing environmental impacts of full-scale algal production through optimization of open pond depth and hydraulic retention time, Environmental Science & Technology, 50 (2016), 4102-4110.
|
[2]
|
M. A. Borowitzka, Energy from microalgae: A short history, in Algae for Biofuels and Energy (ed. M. A. Borowitzka), 5, Springer, 2013, 1–15.
doi: 10.1007/978-94-007-5479-9_1.
|
[3]
|
M. A. Borowitzka and N. R. Moheimani, Algae for Biofuels and Energy, 5, Springer, 2013.
|
[4]
|
M. A. Borowitzka and N. R. Moheimani, Open pond culture systems, in Algae for Biofuels and Energy (ed. M. A. Borowitzka), 5, Springer, 2013,133–152.
doi: 10.1007/978-94-007-5479-9_8.
|
[5]
|
K. E. Brenan, S. L. Campbell and L. R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, 14, Siam, 1996.
|
[6]
|
C. Büskens, Optimierungsmethoden und sensitivitatsanalyse fur optimale steuerprozesse mit steuer-und zustands-beschrankungen, Westfalische Wilhelms-Universitat Munster.
|
[7]
|
P. H. Chen and W. J. Oswald, Thermochemical treatment for algal fermentation, Environment International, 24 (1998), 889-897.
doi: 10.1016/S0160-4120(98)00080-4.
|
[8]
|
R. J. Craggs, T. J. Lundquist and J. R. Benemann, Wastewater Treatment and Algal Biofuel Production, 5, Springer, 2013,153–163.
|
[9]
|
M. D. R. De Pinho, I. Kornienko and H. Maurer, Optimal control of a SEIR model with mixed constraints and L1 cost, in CONTROLO'2014–Proceedings of the 11th Portuguese Conference on Automatic Control, Springer, 135–145.
doi: 10.1007/978-3-319-10380-8_14.
|
[10]
|
R. Fourer, D. Gay and B. Kernighan, Ampl: A modeling language for mathematical programming, Duxbury Press.
|
[11]
|
T. Hurst and V. Rehbock, Optimal control for micro-algae on a raceway model, Biotechnology progress, 34 (2018), 107-119.
|
[12]
|
S. C. James and V. Boriah, Modeling algae growth in an open-channel raceway, Journal of Computational Biology, 17 (2010), 895-906.
doi: 10.1089/cmb.2009.0078.
|
[13]
|
L. S. Jennings, M. Fisher, K. L. Teo and C. Goh, MISER 3: Optimal Control Software, Version 2.0. Theory and User Manual, Dept. of Mathematics, University of Western Australia, Nedlands, 2002.
|
[14]
|
L. S. Jennings, K. L. Teo, V. Rehbock and W. X. Zheng, Optimal control of singular systems with a cost on changing control, Dynamics and Control, 6 (1996), 63-89.
doi: 10.1007/BF02169462.
|
[15]
|
B.-H. Kim, J.-E. Choi, K. Cho, Z. Kang, R. Ramanan, D.-G. Moon and H.-S. Kim, Influence of water depth on microalgal production, biomass harvest, and energy consumption in high rate algal pond using municipal wastewater, J. Microbiol. Biotechnol., 28 (2018), 630-637.
doi: 10.4014/jmb.1801.01014.
|
[16]
|
F. Mairet, O. Bernard, T. Lacour and A. Sciandra, Modelling microalgae growth in nitrogen limited photobiorector for estimating biomass, carbohydrate and neutral lipid productivities, IFAC Proceedings Volumes, 44 (2011), 10591-10596.
doi: 10.3182/20110828-6-IT-1002.03165.
|
[17]
|
H. Maurer, J.-H. R. Kim and G. Vossen, On a state-constrained control problem in optimal production and maintenance, Optimal Control and Dynamic Games, Springer, 2005,289–308.
|
[18]
|
A. Meurer, et al., Sympy: Symbolic computing in python, PeerJ Computer Science, 3 (2017), e103.
doi: 10.7717/peerj-cs.103.
|
[19]
|
R. Muñoz-Tamayo, F. Mairet and O. Bernard, Optimizing microalgal production in raceway systems, Biotechnology Progress, 29 (2013), 543-552.
|
[20]
|
A. K. Pegallapati and N. Nirmalakhandan, Modeling algal growth in bubble columns under sparging with $\text{CO}_2$-enriched air, Bioresource Technology, 124 (2012), 137-145.
|
[21]
|
L. Pontryagin, V. Boltyanskii, R. Gamkrelidze and E. Mischenko, The mathematical theory of optimal processes, Wiley Interscience, New York.
|
[22]
|
R. Pytlak and T. Zawadzki, On solving optimal control problems with higher index differential-algebraic equations, Optimization Methods and Software, 29 (2014), 1139-1162.
doi: 10.1080/10556788.2014.892597.
|
[23]
|
J. Quinn, L. De Winter and T. Bradley, Microalgae bulk growth model with application to industrial scale systems, Bioresource Technology, 102 (2011), 5083-5092.
doi: 10.1016/j.biortech.2011.01.019.
|
[24]
|
S. Sawant, H. Khadamkar, C. Mathpati, R. Pandit and A. Lali, Computational and experimental studies of high depth algal raceway pond photo-bioreactor, Renewable Energy, 118 (2018), 152-159.
doi: 10.1016/j.renene.2017.11.015.
|
[25]
|
A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006), 25-57.
doi: 10.1007/s10107-004-0559-y.
|
[26]
|
P. J. L. B. Williams and L. M. Laurens, Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics, Energy & Environmental Science, 3 (2010), 554-590.
doi: 10.1039/b924978h.
|
[27]
|
G. C. Zittelli, L. Rodolfi, N. Bassi, N. Biondi and M. R. Tredici, Photobioreactors for microalgal biofuel production, in Algae for biofuels and energy (ed. M. A. Borowitzka), 5, Springer, 2013, 115-131.
doi: 10.1007/978-94-007-5479-9_7.
|