[1]
|
J. Abate and W. Whitt, The Fourier-series method for inverting transforms of probability distributions, Queueing Systems, 10 (1992), 5-87.
doi: 10.1007/BF01158520.
|
[2]
|
S. Asmussen, F. Avram and M. R. Pistorius, Russian and American put options under exponential phase-type Lévy models, Stochastic Processes and their Applications, 109 (2004), 79-111.
doi: 10.1016/j.spa.2003.07.005.
|
[3]
|
D. Bauer, A. Kling and J. Russ, A universal pricing framework for guaranteed minimum benefits in variable annuities, Astin Bulletin, 38 (2008), 621-651.
doi: 10.1017/S0515036100015312.
|
[4]
|
C. Bernard, M. Hardy and A. Mackay, State-dependent fees for variable annuity guarantees, Astin Bulletin, 44 (2014), 559-585.
doi: 10.1017/asb.2014.13.
|
[5]
|
R. F. Botta and C. M. Harris, Approximation with generalized hyperexponential distributions: Weak convergence results, Queueing Systems, 1 (1986), 169-190.
doi: 10.1007/BF01536187.
|
[6]
|
N. Cai, On first passage times of a hyper-exponential jump diffusion process, Operations Research Letters, 37 (2009), 127-134.
doi: 10.1016/j.orl.2009.01.002.
|
[7]
|
N. Cai, N. Chen and X. Wan, Pricing double-barrier options under a flexible jump diffusion model, Operations Research Letters, 37 (2009), 163-167.
doi: 10.1016/j.orl.2009.02.006.
|
[8]
|
N. Cai and S. G. Kou, Option pricing under a mixed-exponential jump diffusion model, Management Science, 57 (2011), 2067-2081.
|
[9]
|
D. Dufresne, Fitting combinations of exponentials to probability distributions, Applied Stochastic Models in Business and Industry, 23 (2007), 23-48.
doi: 10.1002/asmb.635.
|
[10]
|
H. U. Gerber, E. S. W. Shiu and N. Smith, Maximizing Dividends without Bankruptcy, Astin Bulletin, 36 (2006), 5-23.
doi: 10.1017/S0515036100014392.
|
[11]
|
H. U. Gerber, E. S. W. Shiu and H. Yang, Valuing equity-linked death benefits and other contingent options: A discounted density approach, Insurance: Mathematics and Economics, 51 (2012), 73-92.
doi: 10.1016/j.insmatheco.2012.03.001.
|
[12]
|
H. U. Gerber, E. S. W. Shiu and H. Yang, Valuing equity-linked death benefits in jump diffusion models, Insurance: Mathematics and Economics, 53 (2013), 615-623.
doi: 10.1016/j.insmatheco.2013.08.010.
|
[13]
|
O. Kella and W. Whitt, Useful martingales for stochastic storage processes with Lévy-type input, Journal of Applied Probability, 29 (1992), 396-403.
doi: 10.2307/3214576.
|
[14]
|
S. G. Kou and H. Wang, First passage times of a jump diffusion process, Advances in Applied Probability, 35 (2003), 504-531.
doi: 10.1239/aap/1051201658.
|
[15]
|
A. Kyprianou and R. Loeffeng, Refracted Lévy processes, Annales de l'Institut Henri Poincaré Probabilités et Statistiques, 46 (2010), 24-44.
doi: 10.1214/08-AIHP307.
|
[16]
|
A. Kyprianou, J. C. Pardo and J. L. Pérez, Occupation times of refracted Lévy processes, Journal of Theoretical Probability, 27 (2014), 1292-1315.
doi: 10.1007/s10959-013-0501-4.
|
[17]
|
B. Li and X. Zhou, On weighted occupation times for refracted spectrally negative Lévy processes, Journal of Mathematical Analysis and Applications, 466 (2018), 215-237.
doi: 10.1016/j.jmaa.2018.05.077.
|
[18]
|
C. C. Siu, S. C. P. Yam and H. Yang, Valuing equity-linked death benefits in a regime-switching framework, Astin Bulletin, 45 (2015), 355-395.
doi: 10.1017/asb.2014.32.
|
[19]
|
E. R. Ulm, The effect of the real option to transfer on the value of guaranteed minimum death benefits, The Journal of Risk and Insurance, 73 (2006), 43-69.
doi: 10.1111/j.1539-6975.2006.00165.x.
|
[20]
|
E. R. Ulm, Analytic solution for return of premium and rollup guaranteed minimum death benefit options under some simple mortality laws, Astin Bulletin, 38 (2008), 543-563.
doi: 10.1017/S0515036100015282.
|
[21]
|
C. Yin, Y. Shen and Y. Wen, Exit problems for jump processes with applications to dividend problems, Journal of Computational and Applied Mathematics, 245 (2013), 30-52.
doi: 10.1016/j.cam.2012.12.004.
|
[22]
|
Z. Zhang and Y. Yong, Valuing guaranteed equity-linked contracts by Laguerre series expansion, Journal of Computational and Applied Mathematics, 357 (2019), 329-348.
doi: 10.1016/j.cam.2019.02.032.
|
[23]
|
Z. Zhang, Y. Yong and W. Yu, Valuing equity-linked death benefits in general exponential Lévy models, Journal of Computational and Applied Mathematics, 365 (2020), 112377, 18pp.
doi: 10.1016/j.cam.2019.112377.
|
[24]
|
J. Zhou and L. Wu, Occupation times of refracted double exponential jump diffusion processes, Statistics and Probability Letters, 106 (2015), 218-227.
doi: 10.1016/j.spl.2015.07.023.
|
[25]
|
J. Zhou and L. Wu, The time of deducting fees for variable annuities under the state-dependent fee structure, Insurance: Mathematics and Economics, 61 (2015), 125-134.
doi: 10.1016/j.insmatheco.2014.12.008.
|
[26]
|
J. Zhou and L. Wu, Valuing equity-linked death benefits with a threshold expense strategy, Insurance: Mathematics and Economics, 62 (2015), 79-90.
doi: 10.1016/j.insmatheco.2015.03.002.
|
[27]
|
J. Zhou and L. Wu, The distribution of refracted Lévy processes with jumps having rational Laplace transforms, Journal of Applied Probability, 54 (2017), 1167-1192.
doi: 10.1017/jpr.2017.58.
|