• Previous Article
    Efficiency, RTS, and marginal returns from salary on the performance of the NBA players: A parallel DEA network with shared inputs
  • JIMO Home
  • This Issue
  • Next Article
    Research on the parallel–batch scheduling with linearly lookahead model
doi: 10.3934/jimo.2021041

Solutions and characterizations under multicriteria management systems

Department of Applied Mathematics, National Pingtung University, 900 Pingtung, Taiwan

* Corresponding author: Yu-Hsien Liao

Received  January 2020 Revised  October 2020 Published  March 2021

In real situations, agents might take different activity levels to participate; agents might represent administrative areas of different scales. On the other hand, agents always face an increasing need to focus on multiple aims efficiently in their operational processes. Thus, we introduce two solutions to investigate distribution mechanism by applying the maximal level-marginal contributions among activity level (decision) vectors under multicriteria management systems. Based on a specific reduced game and some reasonable properties, we offer some characterizations to analyze the rationality for these two solutions. In order to desire that any utility could be distributed among the players and their activity levels in proportion to related differences, two weighted extensions are also proposed by means of different weight functions.

Citation: Yu-Hsien Liao. Solutions and characterizations under multicriteria management systems. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2021041
References:
[1]

E. M. BednarczukJ. Miroforidis and P. Pyzel, A multi-criteria approach to approximate solution of multiple-choice knapsack problem, Computational Optimization and Applications, 70 (2018), 889-910.  doi: 10.1007/s10589-018-9988-z.  Google Scholar

[2]

R. Branzei, On solution concepts for multi-choice cooperative games, SEIO Bulletin, 24 (2008), 13-19.   Google Scholar

[3]

R. BranzeiN. LlorcaJ. Sanchez-Soriano and S. Tijs, Multi-choice clan games and their core, TOP, 17 (2009), 123-138.  doi: 10.1007/s11750-009-0081-8.  Google Scholar

[4]

R. BranzeiN. LlorcaJ. Sanchez-Soriano and S. Tijs, A constrained egalitarian solution for convex multi-choice games, TOP, 22 (2014), 860-874.  doi: 10.1007/s11750-013-0302-z.  Google Scholar

[5]

R. BranzeiS. Tijs and J. M. Zarzuelo, Convex multi-choice cooperative games: Characterizations and monotonic allocation schemes, European J. Oper. Res., 198 (2009), 571-575.  doi: 10.1016/j.ejor.2008.09.024.  Google Scholar

[6]

S. M. R. Davoodi and A. Goli, An integrated disaster relief model based on covering tour using hybrid Benders decomposition and variable neighborhood search: Application in the Iranian context, Computers and Industrial Engineering, 130 (2019), 370-380.  doi: 10.1016/j.cie.2019.02.040.  Google Scholar

[7]

A. Goli, H. K. Zare, R. Tavakkoli–Moghaddam and A. Sadegheih, Hybrid artificial intelligence and robust optimization for a multi-objective product portfolio problem Case study: The dairy products industry, Computers and Industrial Engineering, 137 (2019), 106090. doi: 10.1016/j. cie. 2019.106090.  Google Scholar

[8]

A. GoliH. K. ZareR. Tavakkoli–Moghaddam and A. Sadegheih, Multiobjective fuzzy mathematical model for a financially constrained closed–loop supply chain with labor employment, Computational Intelligence, 36 (2020), 4-34.  doi: 10.1111/coin.12228.  Google Scholar

[9]

M. R. GuariniF. Battisti and A. Chiovitti, A methodology for the selection of multi-criteria decision analysis methods in real estate and land management processes, Sustainability, 10 (2018), 507-534.  doi: 10.3390/su10020507.  Google Scholar

[10]

S. Hart and A. Mas-Colell, Potential, value and consistency, Econometrica, 57 (1989), 589-614.  doi: 10.2307/1911054.  Google Scholar

[11]

Y. A. Hwang and Y. H. Liao, The unit-level-core for multi-choice games: The replicated core for TU games, Journal of Global Optimization, 47 (2010), 161-171.  doi: 10.1007/s10898-009-9463-6.  Google Scholar

[12]

Y. A. Hwang and Y. H. Liao, Reduction and dynamic approach for the multi-choice Shapley value, Journal of Industrial and Management Optimization, 9 (2013), 885-892.  doi: 10.3934/jimo.2013.9.885.  Google Scholar

[13]

Y. H. Liao, The maximal equal allocation of nonseparable costs on multi-choice games, Economics Bulletin, 3 (2008), 1-8.   Google Scholar

[14]

Y. H. Liao, The duplicate extension for the equal allocation of nonseparable costs, Operational Research: An International Journal, 13 (2012), 385-397.   Google Scholar

[15]

Y. H. Liao, The precore: Converse consistent enlargements and alternative axiomatic results, TOP, 26 (2018), 146-163.  doi: 10.1007/s11750-017-0463-2.  Google Scholar

[16]

Y. H. LiaoP. T. Liu and L. Y. Chung, The normalizations and related dynamic processes for two power indexes, Journal of Control and Decision, 4 (2017), 179-194.  doi: 10.1080/23307706.2017.1319303.  Google Scholar

[17]

M. Maschler and G. Owen, The consistent Shapley value for hyperplane games, International Journal of Game Theory, 18 (1989), 389-407.  doi: 10.1007/BF01358800.  Google Scholar

[18]

H. Moulin, On additive methods to share joint costs, The Japanese Economic Review, 46 (1985), 303-332.  doi: 10.1111/j.1468-5876.1995.tb00024.x.  Google Scholar

[19]

I. MustakerovD. Borissova and E. Bantutov, Multiple-choice decision making by multicriteria combinatorial optimization, Advanced Modeling and Optimization, 14 (2012), 729-737.   Google Scholar

[20]

A. van den NouwelandJ. PottersS. Tijs and J. M. Zarzuelo, Cores and related solution concepts for multi-choice games, ZOR-Mathematical Methods of Operations Research, 41 (1995), 289-311.  doi: 10.1007/BF01432361.  Google Scholar

[21] J. S. Ransmeier, The Tennessee Valley Authority, Vanderbilt University Press, Nashville, TN, 1942.   Google Scholar
[22]

A. K. SangaiahE. B. TirkolaeeA. Goli and S. Dehnavi–Arani, Robust optimization and mixed-integer linear programming model for LNG supply chain planning problem, Soft Computing, 24 (2020), 7885-7905.  doi: 10.1007/s00500-019-04010-6.  Google Scholar

[23] L. S. Shapley, Discussant's Comment, Joint Cost Allocation, University of Oklahoma Press, Tulsa, 1982.   Google Scholar
[24]

E. B. TirkolaeeA. GoliM. HematianA. K. Sangaiah and T. Han, Multi-objective multi-mode resource constrained project scheduling problem using Pareto-based algorithms, Computing, 101 (2019), 547-570.  doi: 10.1007/s00607-018-00693-1.  Google Scholar

show all references

References:
[1]

E. M. BednarczukJ. Miroforidis and P. Pyzel, A multi-criteria approach to approximate solution of multiple-choice knapsack problem, Computational Optimization and Applications, 70 (2018), 889-910.  doi: 10.1007/s10589-018-9988-z.  Google Scholar

[2]

R. Branzei, On solution concepts for multi-choice cooperative games, SEIO Bulletin, 24 (2008), 13-19.   Google Scholar

[3]

R. BranzeiN. LlorcaJ. Sanchez-Soriano and S. Tijs, Multi-choice clan games and their core, TOP, 17 (2009), 123-138.  doi: 10.1007/s11750-009-0081-8.  Google Scholar

[4]

R. BranzeiN. LlorcaJ. Sanchez-Soriano and S. Tijs, A constrained egalitarian solution for convex multi-choice games, TOP, 22 (2014), 860-874.  doi: 10.1007/s11750-013-0302-z.  Google Scholar

[5]

R. BranzeiS. Tijs and J. M. Zarzuelo, Convex multi-choice cooperative games: Characterizations and monotonic allocation schemes, European J. Oper. Res., 198 (2009), 571-575.  doi: 10.1016/j.ejor.2008.09.024.  Google Scholar

[6]

S. M. R. Davoodi and A. Goli, An integrated disaster relief model based on covering tour using hybrid Benders decomposition and variable neighborhood search: Application in the Iranian context, Computers and Industrial Engineering, 130 (2019), 370-380.  doi: 10.1016/j.cie.2019.02.040.  Google Scholar

[7]

A. Goli, H. K. Zare, R. Tavakkoli–Moghaddam and A. Sadegheih, Hybrid artificial intelligence and robust optimization for a multi-objective product portfolio problem Case study: The dairy products industry, Computers and Industrial Engineering, 137 (2019), 106090. doi: 10.1016/j. cie. 2019.106090.  Google Scholar

[8]

A. GoliH. K. ZareR. Tavakkoli–Moghaddam and A. Sadegheih, Multiobjective fuzzy mathematical model for a financially constrained closed–loop supply chain with labor employment, Computational Intelligence, 36 (2020), 4-34.  doi: 10.1111/coin.12228.  Google Scholar

[9]

M. R. GuariniF. Battisti and A. Chiovitti, A methodology for the selection of multi-criteria decision analysis methods in real estate and land management processes, Sustainability, 10 (2018), 507-534.  doi: 10.3390/su10020507.  Google Scholar

[10]

S. Hart and A. Mas-Colell, Potential, value and consistency, Econometrica, 57 (1989), 589-614.  doi: 10.2307/1911054.  Google Scholar

[11]

Y. A. Hwang and Y. H. Liao, The unit-level-core for multi-choice games: The replicated core for TU games, Journal of Global Optimization, 47 (2010), 161-171.  doi: 10.1007/s10898-009-9463-6.  Google Scholar

[12]

Y. A. Hwang and Y. H. Liao, Reduction and dynamic approach for the multi-choice Shapley value, Journal of Industrial and Management Optimization, 9 (2013), 885-892.  doi: 10.3934/jimo.2013.9.885.  Google Scholar

[13]

Y. H. Liao, The maximal equal allocation of nonseparable costs on multi-choice games, Economics Bulletin, 3 (2008), 1-8.   Google Scholar

[14]

Y. H. Liao, The duplicate extension for the equal allocation of nonseparable costs, Operational Research: An International Journal, 13 (2012), 385-397.   Google Scholar

[15]

Y. H. Liao, The precore: Converse consistent enlargements and alternative axiomatic results, TOP, 26 (2018), 146-163.  doi: 10.1007/s11750-017-0463-2.  Google Scholar

[16]

Y. H. LiaoP. T. Liu and L. Y. Chung, The normalizations and related dynamic processes for two power indexes, Journal of Control and Decision, 4 (2017), 179-194.  doi: 10.1080/23307706.2017.1319303.  Google Scholar

[17]

M. Maschler and G. Owen, The consistent Shapley value for hyperplane games, International Journal of Game Theory, 18 (1989), 389-407.  doi: 10.1007/BF01358800.  Google Scholar

[18]

H. Moulin, On additive methods to share joint costs, The Japanese Economic Review, 46 (1985), 303-332.  doi: 10.1111/j.1468-5876.1995.tb00024.x.  Google Scholar

[19]

I. MustakerovD. Borissova and E. Bantutov, Multiple-choice decision making by multicriteria combinatorial optimization, Advanced Modeling and Optimization, 14 (2012), 729-737.   Google Scholar

[20]

A. van den NouwelandJ. PottersS. Tijs and J. M. Zarzuelo, Cores and related solution concepts for multi-choice games, ZOR-Mathematical Methods of Operations Research, 41 (1995), 289-311.  doi: 10.1007/BF01432361.  Google Scholar

[21] J. S. Ransmeier, The Tennessee Valley Authority, Vanderbilt University Press, Nashville, TN, 1942.   Google Scholar
[22]

A. K. SangaiahE. B. TirkolaeeA. Goli and S. Dehnavi–Arani, Robust optimization and mixed-integer linear programming model for LNG supply chain planning problem, Soft Computing, 24 (2020), 7885-7905.  doi: 10.1007/s00500-019-04010-6.  Google Scholar

[23] L. S. Shapley, Discussant's Comment, Joint Cost Allocation, University of Oklahoma Press, Tulsa, 1982.   Google Scholar
[24]

E. B. TirkolaeeA. GoliM. HematianA. K. Sangaiah and T. Han, Multi-objective multi-mode resource constrained project scheduling problem using Pareto-based algorithms, Computing, 101 (2019), 547-570.  doi: 10.1007/s00607-018-00693-1.  Google Scholar

[1]

Andrew P. Sage. Risk in system of systems engineering and management. Journal of Industrial & Management Optimization, 2008, 4 (3) : 477-487. doi: 10.3934/jimo.2008.4.477

[2]

Giuseppe Da Prato, Alessandra Lunardi. Maximal dissipativity of a class of elliptic degenerate operators in weighted $L^2$ spaces. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 751-760. doi: 10.3934/dcdsb.2006.6.751

[3]

Hideaki Takagi. Extension of Littlewood's rule to the multi-period static revenue management model with standby customers. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2181-2202. doi: 10.3934/jimo.2020064

[4]

Rafael Caballero, Trinidad Gomez, Julian Molina, Osvaldo Fosado, Maria A. Leon, Madelen Garofal, Beatriz Saavedra. Sawing planning using a multicriteria approach. Journal of Industrial & Management Optimization, 2009, 5 (2) : 303-317. doi: 10.3934/jimo.2009.5.303

[5]

Mourad Azi, Mohand Ouamer Bibi. Optimal control of a dynamical system with intermediate phase constraints and applications in cash management. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021005

[6]

Guirong Jiang, Qishao Lu, Linping Peng. Impulsive Ecological Control Of A Stage-Structured Pest Management System. Mathematical Biosciences & Engineering, 2005, 2 (2) : 329-344. doi: 10.3934/mbe.2005.2.329

[7]

Eungab Kim. On the admission control and demand management in a two-station tandem production system. Journal of Industrial & Management Optimization, 2011, 7 (1) : 1-18. doi: 10.3934/jimo.2011.7.1

[8]

Irena Lasiecka, Mathias Wilke. Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5189-5202. doi: 10.3934/dcds.2013.33.5189

[9]

Jerry L. Bona, Zoran Grujić, Henrik Kalisch. A KdV-type Boussinesq system: From the energy level to analytic spaces. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1121-1139. doi: 10.3934/dcds.2010.26.1121

[10]

Jiankai Xu, Song Jiang, Huoxiong Wu. Some properties of positive solutions for an integral system with the double weighted Riesz potentials. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2117-2134. doi: 10.3934/cpaa.2016030

[11]

Hatem Hajlaoui, Abdellaziz Harrabi, Foued Mtiri. Liouville theorems for stable solutions of the weighted Lane-Emden system. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 265-279. doi: 10.3934/dcds.2017011

[12]

Yan Zhang, Yonghong Wu, Benchawan Wiwatanapataphee, Francisca Angkola. Asset liability management for an ordinary insurance system with proportional reinsurance in a CIR stochastic interest rate and Heston stochastic volatility framework. Journal of Industrial & Management Optimization, 2020, 16 (1) : 71-101. doi: 10.3934/jimo.2018141

[13]

Alberto Bressan, Yilun Jiang. The vanishing viscosity limit for a system of H-J equations related to a debt management problem. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 793-824. doi: 10.3934/dcdss.2018050

[14]

Sachiko Ishida, Tomomi Yokota. Boundedness in a quasilinear fully parabolic Keller-Segel system via maximal Sobolev regularity. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 211-232. doi: 10.3934/dcdss.2020012

[15]

Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323

[16]

Semu Mitiku Kassa. Three-level global resource allocation model for HIV control: A hierarchical decision system approach. Mathematical Biosciences & Engineering, 2018, 15 (1) : 255-273. doi: 10.3934/mbe.2018011

[17]

Danilo Coelho, David Pérez-Castrillo. On Marilda Sotomayor's extraordinary contribution to matching theory. Journal of Dynamics & Games, 2015, 2 (3&4) : 201-206. doi: 10.3934/jdg.2015001

[18]

Ingrid Beltiţă, Anders Melin. The quadratic contribution to the backscattering transform in the rotation invariant case. Inverse Problems & Imaging, 2010, 4 (4) : 599-618. doi: 10.3934/ipi.2010.4.599

[19]

Cristina Lizana, Vilton Pinheiro, Paulo Varandas. Contribution to the ergodic theory of robustly transitive maps. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 353-365. doi: 10.3934/dcds.2015.35.353

[20]

Iraklis Kollias, Elias Camouzis, John Leventides. Global analysis of solutions on the Cournot-Theocharis duopoly with variable marginal costs. Journal of Dynamics & Games, 2017, 4 (1) : 25-39. doi: 10.3934/jdg.2017002

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (19)
  • HTML views (63)
  • Cited by (0)

Other articles
by authors

[Back to Top]