
-
Previous Article
Assembly system with omnichannel coordination
- JIMO Home
- This Issue
-
Next Article
Identifying and determining crowdsourcing service strategies: An empirical study on a crowdsourcing platform in China
Quadratic surface support vector machine with L1 norm regularization
1. | Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, MN 55455, USA |
2. | College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China |
3. | Precima, a NielsenIQ Company, Chicago, IL 60606, USA |
We propose $ \ell_1 $ norm regularized quadratic surface support vector machine models for binary classification in supervised learning. We establish some desired theoretical properties, including the existence and uniqueness of the optimal solution, reduction to the standard SVMs over (almost) linearly separable data sets, and detection of true sparsity pattern over (almost) quadratically separable data sets if the penalty parameter on the $ \ell_1 $ norm is large enough. We also demonstrate their promising practical efficiency by conducting various numerical experiments on both synthetic and publicly available benchmark data sets.
References:
[1] |
Arthur Asuncion and David Newman, UCI Machine Learning Repository, 2007., |
[2] |
Y. Bai, X. Han, T. Chen and H. Yu,
Quadratic kernel-free least squares support vector machine for target diseases classification, Journal of Combinatorial Optimization, 30 (2015), 850-870.
doi: 10.1007/s10878-015-9848-z. |
[3] |
D. P. Bertsekas,
Nonlinear programming, Journal of the Operational Research Society, 48 (1997), 334-334.
|
[4] |
J. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Optimization: Theory and Examples, Springer Science & Business Media, 2010.
doi: 10.1007/978-0-387-31256-9. |
[5] |
C. Cortes and V. Vapnik,
Support-vector networks, Machine Learning, 20 (1995), 273-297.
doi: 10.1007/BF00994018. |
[6] |
N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods, Cambridge University Press, 2000.
doi: 10.1017/CBO9780511801389.![]() ![]() |
[7] |
I. Dagher,
Quadratic kernel-free non-linear support vector machine, Journal of Global Optimization, 41 (2008), 15-30.
doi: 10.1007/s10898-007-9162-0. |
[8] |
Z. Dai and F. Wen,
A generalized approach to sparse and stable portfolio optimization problem, Journal of Industrial and Management Optimization, 14 (2018), 1651-1666.
doi: 10.3934/jimo.2018025. |
[9] |
N. Deng, Y. Tian and C. Zhang, Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions, Chapman and Hall/CRC, 2012. |
[10] |
M. Di and E. M. Joo, A survey of machine learning in wireless sensor networks from networking and application perspectives, 2007 6th International Conference on Information, Communications & Signal Processing, IEEE, (2007), 1-5. |
[11] |
J. Gallier, Schur complements and applications, Geometric Methods and Applications, Springer, (2011), 431-437.
doi: 10.1007/978-1-4419-9961-0. |
[12] |
Z. Gao, S.-C. Fang, J. Luo and and N. Medhin,
A Kernel-Free Double Well Potential Support Vector Machine with Applications, European Journal of Operational Research, 290 (2021), 248-262.
doi: 10.1016/j.ejor.2020.10.040. |
[13] |
Z. Gao and G. Petrova, Rescaled pure greedy algorithm for convex optimization, Calcolo, 56 (2019), 15.
doi: 10.1007/s10092-019-0311-x. |
[14] |
B. Ghaddar and J. Naoum-Sawaya,
High dimensional data classification and feature selection using support vector machines, European Journal of Operational Research, 265 (2018), 993-1004.
doi: 10.1016/j.ejor.2017.08.040. |
[15] |
Y. Hao and F. Meng, A new method on gene selection for tissue classification, Journal of Industrial and Management Optimization, 3 (2007), 739.
doi: 10.3934/jimo. 2007.3.739. |
[16] |
T. K. Ho and M. Basu, Complexity measures of supervised classification problems, IEEE Transactions on Pattern Analysis & Machine Intelligence, (2002), 289-300. |
[17] |
D. S. Kim, N. N. Tam and and N. D. Yen,
Solution existence and stability of quadratically constrained convex quadratic programs, Optimization Letters, 6 (2012), 363-373.
doi: 10.1007/s11590-011-0300-8. |
[18] |
P. Langley and H. A. Simon,
Applications of machine learning and rule induction, Communications of the ACM, 38 (1995), 54-64.
doi: 10.21236/ADA292607. |
[19] |
K. Lounici, M. Pontil, A. B. Tsybakov and S. Van De Geer, Taking Advantage of Sparsity in Multi-Task Learning, arXiv preprint, arXiv: 0903.1468, 2009. |
[20] |
J. Luo, S.-C. Fang, Y. Bai and Z. Deng,
Fuzzy quadratic surface support vector machine based on Fisher discriminant analysis, Journal of Industrial and Management Optimization, 12 (2016), 357-373.
doi: 10.3934/jimo.2016.12.357. |
[21] |
J. Luo, S. -C. Fang, Z. Deng and X. Guo, Soft quadratic surface support vector machine for binary classification, Asia-Pacific Journal of Operational Research, 33 (2016), 1650046.
doi: 10.1142/S0217595916500469. |
[22] |
J. Luo, T. Hong and S.-C. Fang,
Benchmarking robustness of load forecasting models under data integrity attacks, International Journal of Forecasting, 34 (2018), 89-104.
doi: 10.1016/j.ijforecast.2017.08.004. |
[23] |
J. R. Magnus and H. Neudecker,
The elimination matrix: Some lemmas and applications, SIAM Journal on Algebraic Discrete Methods, 1 (1980), 422-449.
doi: 10.1137/0601049. |
[24] |
O. L. Mangasarian,
Uniqueness of solution in linear programming, Linear Algebra and its Applications, 25 (1979), 151-162.
doi: 10.1016/0024-3795(79)90014-4. |
[25] |
L. Monostori, A. Márkus, H. Van Brussel and E. Westkämpfer,
Machine learning approaches to manufacturing, CIRP Annals, 45 (1996), 675-712.
doi: 10.1016/S0007-8506(L1-QSSVM")30216-6. |
[26] |
A. Mousavi, M. Rezaee and R. Ayanzadeh,
A survey on compressive sensing: classical results and recent advancements, Journal of Mathematical Modeling, 8 (2020), 309-344.
|
[27] |
S. Mousavi and J. Shen, Solution uniqueness of convex piecewise affine functions based optimization with applications to constrained $\ell_1$ minimization, ESAIM: Control, Optimisation and Calculus of Variations, 25 (2019), 56.
doi: 10.1051/cocv/2018061. |
[28] |
F. Pedregosa,
Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, 12 (2011), 2825-2830.
|
[29] |
H. Qiu, X. Chen, W. Liu, G. Zhou, Y. Wang and J. Lai,
A fast $\ell_1$-solver and its applications to robust face recognition, Journal of Industrial and Management Optimization, 8 (2012), 163-178.
doi: 10.3934/jimo.2012.8.163. |
[30] |
R. Saab, R. Chartrand and O. Yilmaz, Stable sparse approximations via nonconvex optimization, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, (2008), 3885-3888.
doi: 10.1109/ICASSP. 2008.4518502. |
[31] |
B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, MIT press, 2001.
doi: 10.7551/mitpress/4175.001.0001.![]() ![]() |
[32] |
J. Shen and S. Mousavi,
Least sparsity of $p$-norm based optimization problems with $p>1$, SIAM Journal on Optimization, 28 (2018), 2721-2751.
doi: 10.1137/17M1140066. |
[33] |
J. Shen and S. Mousavi, Exact Support and Vector Recovery of Constrained Sparse VVectors via Constrained Matching Pursuit, arXiv preprint, arXiv: 1903.07236, 2019. |
[34] |
C. Zhang, J. Wang and N. Xiu,
Robust and sparse portfolio model for index tracking, Journal of Industrial and Management Optimization, 15 (2019), 1001-1015.
doi: 10.3934/jimo. |
show all references
References:
[1] |
Arthur Asuncion and David Newman, UCI Machine Learning Repository, 2007., |
[2] |
Y. Bai, X. Han, T. Chen and H. Yu,
Quadratic kernel-free least squares support vector machine for target diseases classification, Journal of Combinatorial Optimization, 30 (2015), 850-870.
doi: 10.1007/s10878-015-9848-z. |
[3] |
D. P. Bertsekas,
Nonlinear programming, Journal of the Operational Research Society, 48 (1997), 334-334.
|
[4] |
J. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Optimization: Theory and Examples, Springer Science & Business Media, 2010.
doi: 10.1007/978-0-387-31256-9. |
[5] |
C. Cortes and V. Vapnik,
Support-vector networks, Machine Learning, 20 (1995), 273-297.
doi: 10.1007/BF00994018. |
[6] |
N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods, Cambridge University Press, 2000.
doi: 10.1017/CBO9780511801389.![]() ![]() |
[7] |
I. Dagher,
Quadratic kernel-free non-linear support vector machine, Journal of Global Optimization, 41 (2008), 15-30.
doi: 10.1007/s10898-007-9162-0. |
[8] |
Z. Dai and F. Wen,
A generalized approach to sparse and stable portfolio optimization problem, Journal of Industrial and Management Optimization, 14 (2018), 1651-1666.
doi: 10.3934/jimo.2018025. |
[9] |
N. Deng, Y. Tian and C. Zhang, Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions, Chapman and Hall/CRC, 2012. |
[10] |
M. Di and E. M. Joo, A survey of machine learning in wireless sensor networks from networking and application perspectives, 2007 6th International Conference on Information, Communications & Signal Processing, IEEE, (2007), 1-5. |
[11] |
J. Gallier, Schur complements and applications, Geometric Methods and Applications, Springer, (2011), 431-437.
doi: 10.1007/978-1-4419-9961-0. |
[12] |
Z. Gao, S.-C. Fang, J. Luo and and N. Medhin,
A Kernel-Free Double Well Potential Support Vector Machine with Applications, European Journal of Operational Research, 290 (2021), 248-262.
doi: 10.1016/j.ejor.2020.10.040. |
[13] |
Z. Gao and G. Petrova, Rescaled pure greedy algorithm for convex optimization, Calcolo, 56 (2019), 15.
doi: 10.1007/s10092-019-0311-x. |
[14] |
B. Ghaddar and J. Naoum-Sawaya,
High dimensional data classification and feature selection using support vector machines, European Journal of Operational Research, 265 (2018), 993-1004.
doi: 10.1016/j.ejor.2017.08.040. |
[15] |
Y. Hao and F. Meng, A new method on gene selection for tissue classification, Journal of Industrial and Management Optimization, 3 (2007), 739.
doi: 10.3934/jimo. 2007.3.739. |
[16] |
T. K. Ho and M. Basu, Complexity measures of supervised classification problems, IEEE Transactions on Pattern Analysis & Machine Intelligence, (2002), 289-300. |
[17] |
D. S. Kim, N. N. Tam and and N. D. Yen,
Solution existence and stability of quadratically constrained convex quadratic programs, Optimization Letters, 6 (2012), 363-373.
doi: 10.1007/s11590-011-0300-8. |
[18] |
P. Langley and H. A. Simon,
Applications of machine learning and rule induction, Communications of the ACM, 38 (1995), 54-64.
doi: 10.21236/ADA292607. |
[19] |
K. Lounici, M. Pontil, A. B. Tsybakov and S. Van De Geer, Taking Advantage of Sparsity in Multi-Task Learning, arXiv preprint, arXiv: 0903.1468, 2009. |
[20] |
J. Luo, S.-C. Fang, Y. Bai and Z. Deng,
Fuzzy quadratic surface support vector machine based on Fisher discriminant analysis, Journal of Industrial and Management Optimization, 12 (2016), 357-373.
doi: 10.3934/jimo.2016.12.357. |
[21] |
J. Luo, S. -C. Fang, Z. Deng and X. Guo, Soft quadratic surface support vector machine for binary classification, Asia-Pacific Journal of Operational Research, 33 (2016), 1650046.
doi: 10.1142/S0217595916500469. |
[22] |
J. Luo, T. Hong and S.-C. Fang,
Benchmarking robustness of load forecasting models under data integrity attacks, International Journal of Forecasting, 34 (2018), 89-104.
doi: 10.1016/j.ijforecast.2017.08.004. |
[23] |
J. R. Magnus and H. Neudecker,
The elimination matrix: Some lemmas and applications, SIAM Journal on Algebraic Discrete Methods, 1 (1980), 422-449.
doi: 10.1137/0601049. |
[24] |
O. L. Mangasarian,
Uniqueness of solution in linear programming, Linear Algebra and its Applications, 25 (1979), 151-162.
doi: 10.1016/0024-3795(79)90014-4. |
[25] |
L. Monostori, A. Márkus, H. Van Brussel and E. Westkämpfer,
Machine learning approaches to manufacturing, CIRP Annals, 45 (1996), 675-712.
doi: 10.1016/S0007-8506(L1-QSSVM")30216-6. |
[26] |
A. Mousavi, M. Rezaee and R. Ayanzadeh,
A survey on compressive sensing: classical results and recent advancements, Journal of Mathematical Modeling, 8 (2020), 309-344.
|
[27] |
S. Mousavi and J. Shen, Solution uniqueness of convex piecewise affine functions based optimization with applications to constrained $\ell_1$ minimization, ESAIM: Control, Optimisation and Calculus of Variations, 25 (2019), 56.
doi: 10.1051/cocv/2018061. |
[28] |
F. Pedregosa,
Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, 12 (2011), 2825-2830.
|
[29] |
H. Qiu, X. Chen, W. Liu, G. Zhou, Y. Wang and J. Lai,
A fast $\ell_1$-solver and its applications to robust face recognition, Journal of Industrial and Management Optimization, 8 (2012), 163-178.
doi: 10.3934/jimo.2012.8.163. |
[30] |
R. Saab, R. Chartrand and O. Yilmaz, Stable sparse approximations via nonconvex optimization, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, (2008), 3885-3888.
doi: 10.1109/ICASSP. 2008.4518502. |
[31] |
B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, MIT press, 2001.
doi: 10.7551/mitpress/4175.001.0001.![]() ![]() |
[32] |
J. Shen and S. Mousavi,
Least sparsity of $p$-norm based optimization problems with $p>1$, SIAM Journal on Optimization, 28 (2018), 2721-2751.
doi: 10.1137/17M1140066. |
[33] |
J. Shen and S. Mousavi, Exact Support and Vector Recovery of Constrained Sparse VVectors via Constrained Matching Pursuit, arXiv preprint, arXiv: 1903.07236, 2019. |
[34] |
C. Zhang, J. Wang and N. Xiu,
Robust and sparse portfolio model for index tracking, Journal of Industrial and Management Optimization, 15 (2019), 1001-1015.
doi: 10.3934/jimo. |





Data set | Artificial I | Artificial II | Artificial III | Artificial IV | Artificial 3-D |
3 | 3 | 5 | 10 | 3 | |
Sample size ( |
67/58 | 79/71 | 106/81 | 204/171 | 99/101 |
Data set | Artificial I | Artificial II | Artificial III | Artificial IV | Artificial 3-D |
3 | 3 | 5 | 10 | 3 | |
Sample size ( |
67/58 | 79/71 | 106/81 | 204/171 | 99/101 |
Data set | # of features | name of class | sample size |
Iris | 4 | versicolour | 50 |
virginica | 50 | ||
Car Evaluation | 6 | unacc | 1210 |
acc | 384 | ||
Diabetes | 8 | yes | 268 |
no | 500 | ||
German Credit Data | 20 | creditworthy | 700 |
non-creditworthy | 300 | ||
Ionosphere | 34 | good | 225 |
bad | 126 |
Data set | # of features | name of class | sample size |
Iris | 4 | versicolour | 50 |
virginica | 50 | ||
Car Evaluation | 6 | unacc | 1210 |
acc | 384 | ||
Diabetes | 8 | yes | 268 |
no | 500 | ||
German Credit Data | 20 | creditworthy | 700 |
non-creditworthy | 300 | ||
Ionosphere | 34 | good | 225 |
bad | 126 |
Training Rate |
Model | Accuracy score (%) | CPU time (s) | |||
mean | std | min | max | |||
10 | L1-SQSSVM | 91.93 | 5.49 | 63.33 | 98.89 | 0.058 |
SQSSVM | 89.33 | 4.07 | 81.11 | 96.67 | 0.050 | |
SVM-Quad | 89.49 | 4.91 | 80.00 | 97.78 | 0.003 | |
SVM | 89.62 | 4.10 | 78.89 | 97.78 | 0.001 | |
20 | L1-SQSSVM | 94.33 | 2.20 | 90.00 | 98.75 | 0.063 |
SQSSVM | 92.60 | 2.57 | 82.50 | 96.25 | 0.055 | |
SVM-Quad | 93.03 | 2.72 | 86.25 | 98.75 | 0.002 | |
SVM | 93.00 | 3.01 | 82.50 | 97.50 | 0.002 | |
40 | L1-SQSSVM | 95.40 | 2.76 | 86.67 | 100.00 | 0.075 |
SQSSVM | 93.97 | 3.73 | 78.33 | 100.00 | 0.062 | |
SVM-Quad | 94.30 | 3.38 | 81.67 | 98.33 | 0.002 | |
SVM | 94.50 | 3.29 | 85.00 | 100.00 | 0.002 |
Training Rate |
Model | Accuracy score (%) | CPU time (s) | |||
mean | std | min | max | |||
10 | L1-SQSSVM | 91.93 | 5.49 | 63.33 | 98.89 | 0.058 |
SQSSVM | 89.33 | 4.07 | 81.11 | 96.67 | 0.050 | |
SVM-Quad | 89.49 | 4.91 | 80.00 | 97.78 | 0.003 | |
SVM | 89.62 | 4.10 | 78.89 | 97.78 | 0.001 | |
20 | L1-SQSSVM | 94.33 | 2.20 | 90.00 | 98.75 | 0.063 |
SQSSVM | 92.60 | 2.57 | 82.50 | 96.25 | 0.055 | |
SVM-Quad | 93.03 | 2.72 | 86.25 | 98.75 | 0.002 | |
SVM | 93.00 | 3.01 | 82.50 | 97.50 | 0.002 | |
40 | L1-SQSSVM | 95.40 | 2.76 | 86.67 | 100.00 | 0.075 |
SQSSVM | 93.97 | 3.73 | 78.33 | 100.00 | 0.062 | |
SVM-Quad | 94.30 | 3.38 | 81.67 | 98.33 | 0.002 | |
SVM | 94.50 | 3.29 | 85.00 | 100.00 | 0.002 |
Training Rate |
Model | Accuracy score (%) | CPU time (s) | |||
mean | std | min | max | |||
10 | L1-SQSSVM | 90.48 | 2.13 | 83.48 | 95.05 | 0.961 |
SQSSVM | 90.48 | 2.35 | 80.98 | 94.49 | 0.937 | |
SVM-Quad | 88.32 | 2.70 | 80.98 | 93.45 | 0.023 | |
SVM | 84.40 | 1.09 | 81.88 | 86.90 | 0.001 | |
20 | L1-SQSSVM | 92.81 | 1.17 | 89.50 | 95.30 | 1.109 |
SQSSVM | 92.77 | 1.21 | 89.58 | 95.30 | 1.117 | |
SVM-Quad | 92.30 | 1.14 | 88.56 | 94.83 | 0.001 | |
SVM | 85.08 | 0.91 | 83.23 | 86.91 | 0.008 | |
40 | L1-SQSSVM | 95.80 | 0.73 | 93.83 | 97.07 | 1.501 |
SQSSVM | 95.76 | 0.77 | 93.83 | 97.28 | 1.521 | |
SVM-Quad | 93.69 | 0.83 | 91.43 | 95.72 | 0.087 | |
SVM | 85.26 | 1.09 | 81.71 | 87.36 | 0.003 |
Training Rate |
Model | Accuracy score (%) | CPU time (s) | |||
mean | std | min | max | |||
10 | L1-SQSSVM | 90.48 | 2.13 | 83.48 | 95.05 | 0.961 |
SQSSVM | 90.48 | 2.35 | 80.98 | 94.49 | 0.937 | |
SVM-Quad | 88.32 | 2.70 | 80.98 | 93.45 | 0.023 | |
SVM | 84.40 | 1.09 | 81.88 | 86.90 | 0.001 | |
20 | L1-SQSSVM | 92.81 | 1.17 | 89.50 | 95.30 | 1.109 |
SQSSVM | 92.77 | 1.21 | 89.58 | 95.30 | 1.117 | |
SVM-Quad | 92.30 | 1.14 | 88.56 | 94.83 | 0.001 | |
SVM | 85.08 | 0.91 | 83.23 | 86.91 | 0.008 | |
40 | L1-SQSSVM | 95.80 | 0.73 | 93.83 | 97.07 | 1.501 |
SQSSVM | 95.76 | 0.77 | 93.83 | 97.28 | 1.521 | |
SVM-Quad | 93.69 | 0.83 | 91.43 | 95.72 | 0.087 | |
SVM | 85.26 | 1.09 | 81.71 | 87.36 | 0.003 |
Training Rate |
Model | Accuracy score (%) | CPU time (s) | |||
mean | std | min | max | |||
10 | L1-SQSSVM | 74.21 | 1.53 | 71.24 | 76.01 | 0.692 |
SQSSVM | 64.38 | 3.65 | 57.80 | 71.68 | 0.679 | |
SVM-Quad | 66.07 | 4.53 | 57.66 | 71.53 | 0.102 | |
SVM | 72.95 | 3.49 | 65.61 | 76.16 | 0.003 | |
20 | L1-SQSSVM | 76.28 | 0.63 | 75.12 | 77.07 | 0.924 |
SQSSVM | 69.40 | 2.49 | 65.85 | 72.52 | 0.950 | |
SVM-Quad | 70.28 | 2.30 | 65.85 | 73.82 | 9.080 | |
SVM | 74.86 | 1.68 | 71.54 | 77.07 | 0.009 | |
40 | L1-SQSSVM | 76.62 | 1.83 | 73.97 | 79.61 | 1.459 |
SQSSVM | 74.34 | 1.99 | 71.15 | 77.01 | 1.490 | |
SVM-Quad | 75.21 | 1.23 | 73.54 | 77.22 | 86.561 | |
SVM | 76.29 | 2.15 | 73.10 | 80.26 | 0.006 |
Training Rate |
Model | Accuracy score (%) | CPU time (s) | |||
mean | std | min | max | |||
10 | L1-SQSSVM | 74.21 | 1.53 | 71.24 | 76.01 | 0.692 |
SQSSVM | 64.38 | 3.65 | 57.80 | 71.68 | 0.679 | |
SVM-Quad | 66.07 | 4.53 | 57.66 | 71.53 | 0.102 | |
SVM | 72.95 | 3.49 | 65.61 | 76.16 | 0.003 | |
20 | L1-SQSSVM | 76.28 | 0.63 | 75.12 | 77.07 | 0.924 |
SQSSVM | 69.40 | 2.49 | 65.85 | 72.52 | 0.950 | |
SVM-Quad | 70.28 | 2.30 | 65.85 | 73.82 | 9.080 | |
SVM | 74.86 | 1.68 | 71.54 | 77.07 | 0.009 | |
40 | L1-SQSSVM | 76.62 | 1.83 | 73.97 | 79.61 | 1.459 |
SQSSVM | 74.34 | 1.99 | 71.15 | 77.01 | 1.490 | |
SVM-Quad | 75.21 | 1.23 | 73.54 | 77.22 | 86.561 | |
SVM | 76.29 | 2.15 | 73.10 | 80.26 | 0.006 |
Training Rate |
Model | Accuracy score (%) | CPU time (s) | |||
mean | std | min | max | |||
10 | L1-SQSSVM | 71.86 | 1.85 | 68.44 | 75.00 | 1.596 |
SQSSVM | 67.00 | 3.02 | 63.67 | 71.67 | 1.598 | |
SVM-Quad | 68.29 | 2.61 | 64.00 | 72.44 | 0.006 | |
SVM | 69.49 | 3.58 | 61.89 | 74.33 | 0.002 | |
20 | L1-SQSSVM | 73.88 | 1.29 | 71.38 | 75.88 | 2.572 |
SQSSVM | 67.55 | 2.78 | 62.88 | 72.88 | 2.541 | |
SVM-Quad | 67.78 | 2.75 | 64.13 | 72.13 | 0.005 | |
SVM | 73.86 | 1.22 | 71.25 | 75.88 | 0.005 | |
40 | L1-SQSSVM | 74.86 | 1.25 | 72.00 | 77.00 | 4.622 |
SQSSVM | 65.99 | 2.66 | 61.17 | 69.83 | 4.456 | |
SVM-Quad | 65.13 | 1.19 | 63.50 | 67.00 | 0.262 | |
SVM | 74.73 | 1.07 | 73.50 | 77.00 | 0.005 |
Training Rate |
Model | Accuracy score (%) | CPU time (s) | |||
mean | std | min | max | |||
10 | L1-SQSSVM | 71.86 | 1.85 | 68.44 | 75.00 | 1.596 |
SQSSVM | 67.00 | 3.02 | 63.67 | 71.67 | 1.598 | |
SVM-Quad | 68.29 | 2.61 | 64.00 | 72.44 | 0.006 | |
SVM | 69.49 | 3.58 | 61.89 | 74.33 | 0.002 | |
20 | L1-SQSSVM | 73.88 | 1.29 | 71.38 | 75.88 | 2.572 |
SQSSVM | 67.55 | 2.78 | 62.88 | 72.88 | 2.541 | |
SVM-Quad | 67.78 | 2.75 | 64.13 | 72.13 | 0.005 | |
SVM | 73.86 | 1.22 | 71.25 | 75.88 | 0.005 | |
40 | L1-SQSSVM | 74.86 | 1.25 | 72.00 | 77.00 | 4.622 |
SQSSVM | 65.99 | 2.66 | 61.17 | 69.83 | 4.456 | |
SVM-Quad | 65.13 | 1.19 | 63.50 | 67.00 | 0.262 | |
SVM | 74.73 | 1.07 | 73.50 | 77.00 | 0.005 |
Training Rate |
Model | Accuracy score (%) | CPU time (s) | |||
mean | std | min | max | |||
10 | L1-SQSSVM | 82.75 | 3.69 | 76.27 | 88.29 | 4.141 |
SQSSVM | 79.24 | 3.15 | 74.37 | 83.86 | 3.945 | |
SVM-Quad | 83.48 | 2.39 | 78.48 | 78.48 | 0.003 | |
SVM | 80.09 | 2.24 | 75.95 | 82.28 | 0.006 | |
20 | L1-SQSSVM | 87.90 | 3.72 | 80.07 | 92.53 | 5.096 |
SQSSVM | 87.19 | 4.32 | 77.94 | 91.81 | 4.854 | |
SVM-Quad | 86.16 | 1.24 | 84.34 | 84.34 | 0.005 | |
SVM | 82.03 | 5.40 | 67.97 | 86.83 | 0.002 | |
40 | L1-SQSSVM | 90.28 | 3.33 | 83.41 | 94.31 | 7.063 |
SQSSVM | 89.53 | 4.23 | 81.99 | 94.31 | 6.781 | |
SVM-Quad | 86.40 | 3.03 | 81.04 | 91.00 | 0.007 | |
SVM | 83.60 | 3.46 | 76.78 | 88.63 | 0.006 |
Training Rate |
Model | Accuracy score (%) | CPU time (s) | |||
mean | std | min | max | |||
10 | L1-SQSSVM | 82.75 | 3.69 | 76.27 | 88.29 | 4.141 |
SQSSVM | 79.24 | 3.15 | 74.37 | 83.86 | 3.945 | |
SVM-Quad | 83.48 | 2.39 | 78.48 | 78.48 | 0.003 | |
SVM | 80.09 | 2.24 | 75.95 | 82.28 | 0.006 | |
20 | L1-SQSSVM | 87.90 | 3.72 | 80.07 | 92.53 | 5.096 |
SQSSVM | 87.19 | 4.32 | 77.94 | 91.81 | 4.854 | |
SVM-Quad | 86.16 | 1.24 | 84.34 | 84.34 | 0.005 | |
SVM | 82.03 | 5.40 | 67.97 | 86.83 | 0.002 | |
40 | L1-SQSSVM | 90.28 | 3.33 | 83.41 | 94.31 | 7.063 |
SQSSVM | 89.53 | 4.23 | 81.99 | 94.31 | 6.781 | |
SVM-Quad | 86.40 | 3.03 | 81.04 | 91.00 | 0.007 | |
SVM | 83.60 | 3.46 | 76.78 | 88.63 | 0.006 |
![]() |
L1-QSSVM | L1-SQSSVM |
Linearly Separable |
● Solution existence ● z* is almost always unique ● Equivalence with SVM for large enough |
● Solution existence ● z* is almost always unique ● Equivalence with SSVM for large enough ● Solution is almost always unique with |
Quadratically Separable |
● Solution existence ● z* is almost always unique ● Capturing possible sparsity of |
● Solution existence ● z* is almost always unique ● Solution is almost always unique with ● Capturing possible sparsity of |
![]() |
L1-QSSVM | L1-SQSSVM |
Linearly Separable |
● Solution existence ● z* is almost always unique ● Equivalence with SVM for large enough |
● Solution existence ● z* is almost always unique ● Equivalence with SSVM for large enough ● Solution is almost always unique with |
Quadratically Separable |
● Solution existence ● z* is almost always unique ● Capturing possible sparsity of |
● Solution existence ● z* is almost always unique ● Solution is almost always unique with ● Capturing possible sparsity of |
[1] |
K. Schittkowski. Optimal parameter selection in support vector machines. Journal of Industrial and Management Optimization, 2005, 1 (4) : 465-476. doi: 10.3934/jimo.2005.1.465 |
[2] |
Florian Dumpert. Quantitative robustness of localized support vector machines. Communications on Pure and Applied Analysis, 2020, 19 (8) : 3947-3956. doi: 10.3934/cpaa.2020174 |
[3] |
Hong-Gunn Chew, Cheng-Chew Lim. On regularisation parameter transformation of support vector machines. Journal of Industrial and Management Optimization, 2009, 5 (2) : 403-415. doi: 10.3934/jimo.2009.5.403 |
[4] |
Keiji Tatsumi, Masashi Akao, Ryo Kawachi, Tetsuzo Tanino. Performance evaluation of multiobjective multiclass support vector machines maximizing geometric margins. Numerical Algebra, Control and Optimization, 2011, 1 (1) : 151-169. doi: 10.3934/naco.2011.1.151 |
[5] |
Ye Tian, Wei Yang, Gene Lai, Menghan Zhao. Predicting non-life insurer's insolvency using non-kernel fuzzy quadratic surface support vector machines. Journal of Industrial and Management Optimization, 2019, 15 (2) : 985-999. doi: 10.3934/jimo.2018081 |
[6] |
Fengqiu Liu, Xiaoping Xue. Subgradient-based neural network for nonconvex optimization problems in support vector machines with indefinite kernels. Journal of Industrial and Management Optimization, 2016, 12 (1) : 285-301. doi: 10.3934/jimo.2016.12.285 |
[7] |
Yanfei Lu, Qingfei Yin, Hongyi Li, Hongli Sun, Yunlei Yang, Muzhou Hou. Solving higher order nonlinear ordinary differential equations with least squares support vector machines. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1481-1502. doi: 10.3934/jimo.2019012 |
[8] |
Yubo Yuan, Weiguo Fan, Dongmei Pu. Spline function smooth support vector machine for classification. Journal of Industrial and Management Optimization, 2007, 3 (3) : 529-542. doi: 10.3934/jimo.2007.3.529 |
[9] |
Qianru Zhai, Ye Tian, Jingyue Zhou. A SMOTE-based quadratic surface support vector machine for imbalanced classification with mislabeled information. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2021230 |
[10] |
Jian Luo, Shu-Cherng Fang, Yanqin Bai, Zhibin Deng. Fuzzy quadratic surface support vector machine based on fisher discriminant analysis. Journal of Industrial and Management Optimization, 2016, 12 (1) : 357-373. doi: 10.3934/jimo.2016.12.357 |
[11] |
Pooja Louhan, S. K. Suneja. On fractional vector optimization over cones with support functions. Journal of Industrial and Management Optimization, 2017, 13 (2) : 549-572. doi: 10.3934/jimo.2016031 |
[12] |
Yubo Yuan. Canonical duality solution for alternating support vector machine. Journal of Industrial and Management Optimization, 2012, 8 (3) : 611-621. doi: 10.3934/jimo.2012.8.611 |
[13] |
Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018 |
[14] |
Siamak RabieniaHaratbar. Support theorem for the Light-Ray transform of vector fields on Minkowski spaces. Inverse Problems and Imaging, 2018, 12 (2) : 293-314. doi: 10.3934/ipi.2018013 |
[15] |
Xin Li, Ziguan Cui, Linhui Sun, Guanming Lu, Debnath Narayan. Research on iterative repair algorithm of Hyperchaotic image based on support vector machine. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1199-1218. doi: 10.3934/dcdss.2019083 |
[16] |
Fatemeh Bazikar, Saeed Ketabchi, Hossein Moosaei. Smooth augmented Lagrangian method for twin bounded support vector machine. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021027 |
[17] |
Xin Yan, Hongmiao Zhu. A kernel-free fuzzy support vector machine with Universum. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021184 |
[18] |
Ling Lin, Dong He, Zhiyi Tan. Bounds on delay start LPT algorithm for scheduling on two identical machines in the $l_p$ norm. Journal of Industrial and Management Optimization, 2008, 4 (4) : 817-826. doi: 10.3934/jimo.2008.4.817 |
[19] |
Duo Wang, Zheng-Fen Jin, Youlin Shang. A penalty decomposition method for nuclear norm minimization with l1 norm fidelity term. Evolution Equations and Control Theory, 2019, 8 (4) : 695-708. doi: 10.3934/eect.2019034 |
[20] |
Ning Lu, Ying Liu. Application of support vector machine model in wind power prediction based on particle swarm optimization. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1267-1276. doi: 10.3934/dcdss.2015.8.1267 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]