[1]
|
S. Assani, J. Jiang, A. Assani and F. Yang, Scale efficiency of China's regional R & D value chain: A double frontier network DEA approach, Journal of Industrial & Management Optimization, 17 (2021), 1357-1382.
doi: 10.3934/jimo.2020025.
|
[2]
|
S. Assani, J. Jiang, A. Assani and F. Yang, Most productive scale size of China's regional R & D value chain: A mixed structure network, preprint, arXiv: 1910.03805.
|
[3]
|
S. Assani, J. Jiang, R. Cao and F. Yang, Most productive scale size decomposition for multi-stage systems in data envelopment analysis, Computers and Industrial Engineering, 120 (2018), 279-287.
doi: 10.1016/j.cie.2018.04.043.
|
[4]
|
S. Assani and M. S. Mansoor, Salary, offensive, and defensive stats of 2604 NBA players over 11 seasons (2005-2016), Mendeley Data, V1 (2020).
doi: 10.17632/fm86gnkw6x. 1.
|
[5]
|
J. E. Boscá, V. Liern, A. Martínez and R. Sala, Increasing offensive or defensive efficiency? An analysis of Italian and Spanish football, Omega, 37 (2009), 63-78.
doi: 10.1016/j.omega.2006.08.002.
|
[6]
|
A. Charnes, W. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units, European Journal of Operational Research, 2 (1978), 429-444.
doi: 10.1016/0377-2217(78)90138-8.
|
[7]
|
Y. Chen, Y. Gong and X. Li, Evaluating NBA player performance using bounded integer data envelopment analysis, INFOR: Information Systems and Operational Research, 55 (2017), 38-51.
doi: 10.1080/03155986.2016.1262581.
|
[8]
|
W. W. Cooper, J. L. Ruiz and I. Sirvent, Selecting non-zero weights to evaluate effectiveness of basketball players with DEA, European Journal of Operational Research, 195 (2009), 563-574.
doi: 10.1016/j.ejor.2008.02.012.
|
[9]
|
Ó. Gutiérrez and J. L. Ruiz, Data envelopment analysis and cross-efficiency evaluation in the management of sports teams: The assessment of game performance of players in the Spanish handball league, Journal of Sport Management, 27 (2013), 217-229.
doi: 10.1123/jsm.27.3.217.
|
[10]
|
C. -K. Hu, F. -B. Liu, H. -M. Chen and C. -F. Hu, Network data envelopment analysis with fuzzy non-discretionary factors, Journal of Industrial & Management Optimization.
doi: 10.3934/jimo. 2020046.
|
[11]
|
C. Kao, Efficiency decomposition for general multi-stage systems in data envelopment analysis, European Journal of Operational Research, 232 (2014), 117-124.
doi: 10.1016/j.ejor.2013.07.012.
|
[12]
|
C. Kao, Network data envelopment analysis: A review, European Journal of Operational Research, 239 (2014), 1-16.
doi: 10.1016/j.ejor.2014.02.039.
|
[13]
|
C. Kao and S.-T. Liu, Cross efficiency measurement and decomposition in two basic network systems, Omega, 83 (2019), 70-79.
doi: 10.1016/j.omega.2018.02.004.
|
[14]
|
C. Kao and S.-N. Hwang, Decomposition of technical and scale efficiencies in two-stage production systems, European Journal of Operational Research, 211 (2011), 515-519.
doi: 10.1016/j.ejor.2011.01.010.
|
[15]
|
H. Katayama and H. Nuch, A game-level analysis of salary dispersion and team performance in the national basketball association, Applied Economics, 43 (2011), 1193-1207.
doi: 10.1080/00036840802600335.
|
[16]
|
B. L. Lee and A. C. Worthington, A note on the 'Linsanity' of measuring the relative efficiency of National Basketball association guards, Applied Economics, 45 (2013), 4193-4202.
doi: 10.1080/00036846.2013.770125.
|
[17]
|
Y. Li, L. Wang and F. Li, A data-driven prediction approach for sports team performance and its application to National Basketball Association, Omega, 98 (2021), 102-123.
doi: 10.1016/j.omega.2019.102123.
|
[18]
|
Y. Li, X. Lei and A. Morton, Performance evaluation of nonhomogeneous hospitals: the case of Hong Kong hospitals, Health Care Management Science, 22 (2019), 215-228.
doi: 10.1007/s10729-018-9433-y.
|
[19]
|
Y. Li, X. Shi, A. Emrouznejad and L. Liang, Environmental performance evaluation of Chinese industrial systems: A network SBM approach, Journal of the Operational Research Society, 69 (2018), 825-839.
doi: 10.1057/s41274-017-0257-9.
|
[20]
|
R. Lyons, E. N. Jackson and A. Livingston, Determinants of NBA player salaries, The Sport Journal, 18 (2015).
doi: 10.17682/sportjournal/2015.019.
|
[21]
|
K. Mikolajec, A. Maszczyk and T. Zajac, Game indicators determining sports performance in the NBA, Journal of Human Kinetics, 37 (2013), 145-151.
doi: 10.2478/hukin-2013-0035.
|
[22]
|
P. Moreno and S. Lozano, A network DEA assessment of team efficiency in the NBA, Annals of Operations Research, 214 (2014), 99-124.
doi: 10.1007/s10479-012-1074-9.
|
[23]
|
A. Stefaniec, K. Hosseini, J. Xie and Y. Li, Sustainability assessment of inland transportation in China: A triple bottom line-based network DEA approach, Transportation Research Part D: Transport and Environment, 80 (2020), 102258.
doi: 10.1016/j. trd. 2020.102258.
|
[24]
|
G. Villa and S. Lozano, Dynamic network DEA approach to basketball games efficiency, Journal of the Operational Research Society, 69 (2018), 1738-1750.
doi: 10.1080/01605682.2017.1409158.
|
[25]
|
M. Yang, Y. Wei, L. Liang, J. Ding and X. Wang, Performance evaluation of NBA teams: A non-homogeneous DEA approach, Journal of the Operational Research Society, (2020), 1–12.
doi: 10.1080/01605682.2020.1718560.
|
[26]
|
L. Zhang and K. Chen, Hierarchical network systems: An application to high-technology industry in China, Omega, 82 (2019), 118-131.
doi: 10.1016/j.omega.2017.12.007.
|