
-
Previous Article
The optimal pricing and service strategies of a dual-channel retailer under free riding
- JIMO Home
- This Issue
-
Next Article
Nonlinear Grey Bernoulli model NGBM (1, 1)'s parameter optimisation method and model application
A partitioning column approach for solving LED sorter manipulator path planning problems
1. | Department of Industrial Engineering and Management, National Yang Ming Chiao Tung Univeristy, Hsinchu, 30010, Taiwan |
2. | Department of Industrial Engineering and Management, National Chiao Tung University, Hsinchu, 30010, Taiwan |
This study considers the path planning problem of picking light-emitting diodes on a silicon wafer. The objective is to find the shortest walk for the sorter manipulator covering all nodes in a fully connected graph. We propose a partitioning column approach to reduce the original graph's size, where adjacent nodes at the same column are seen as a required edge, and the connection of vertices at different required edges is viewed as a non-required edge. The path planning problem turns to find the shortest closed walk to traverse required edges and is modeled as a rural postman problem with a solvable problem size. We formulate a mixed-integer program to obtain the exact solution for the transformed graph. We compare the proposed method with a TSP solver, Concorde. The result shows that our approach significantly reduces the problem size and obtains a near-optimal solution. For large problem instances, the proposed method can obtain a feasible solution in time, but not for the benchmarking solver.
References:
[1] |
D. Applegate, R. Bixby, V. Chvátal and W. Cook,
Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems, Mathematical Programming, 97 (2003), 91-153.
doi: 10.1007/s10107-003-0440-4. |
[2] |
S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman and A. Y. Wu,
An optimal algorithm for approximate nearest neighbor searching, Journal of the ACM, 45 (1998), 891-923.
doi: 10.1145/293347.293348. |
[3] |
N. Christofides, Worst-case analysis of a new heuristic for the travelling salesman problem, Technical Report, 388, Graduate School of Industrial Administration, CMU, 1976. |
[4] |
N. Christofides, V. Campos, A. Corberan and E. Mota, An Algorithm for the Rural Postman Problem, , Imperical College, London, England, Tech. Report, 1981. |
[5] |
W. Cook, Concorde TSP solver, Available at: http://www.math.uwaterloo.ca/tsp/concorde/index.html. [Accessed on March 29, 2019], 2006. |
[6] |
A. Corberan and J. M. Sanchis,
A polyhedral approach to therural postman problem, European Journal of Operational Research, 79 (1994), 95-114.
doi: 10.1016/0377-2217(94)90398-0. |
[7] |
G. Cornuéjols, J. Fonlupt and D. Naddef,
The traveling salesman problem on a graph and some related integer polyhedra, Mathematical Programming, 33 (1985), 1-27.
doi: 10.1007/BF01582008. |
[8] |
H. Crowder and M. W. Padberg,
Solving large-scale symmetric travelling salesman problems to optimality, Management Science, 26 (1980), 495-509.
doi: 10.1287/mnsc.26.5.495. |
[9] |
M. Drexl,
On the generalized directed rural postman problem, Journal of the Operational Research Society, 65 (2014), 1143-1154.
doi: 10.1057/jors.2013.60. |
[10] |
M. Dror, Arc Routing: Theory, Solutions, and Applications, Kluwer, Boston, MA, 2000.
doi: 10.1007/978-1-4615-4495-1. |
[11] |
H. A. Eiselt, M. Gendreau and G. Laporte,
Arc routing problems, part Ⅱ: The rural postman problem, Operations Research, 43 (1995), 399-414.
doi: 10.1287/opre.43.3.399. |
[12] |
J. Edmond and E. L. Johnson,
Matching, Euler tour and the chinese postman problem, Mathematical Programming, 5 (1973), 88-124.
doi: 10.1007/BF01580113. |
[13] |
E. Fernández, O. Meza, R. Garfinkel and M. Ortega,
On the undirected rural postman problem: Tight bounds based on a new formulation, Operations Research, 51 (2003), 281-291.
doi: 10.1287/opre.51.2.281.12790. |
[14] |
J. Fonlupt and A. Nachef,
Dynamic programming and the graphical traveling salesman problem, Journal of the ACM (JACM), 40 (1993), 1165-1187.
doi: 10.1145/174147.169803. |
[15] |
R. W. Folyd, Algorithm 97: Shortest path, Communications of the ACM, 5 (1962), 345.
doi: 10.1145/367766.368168. |
[16] |
R. S. Garfinkel and I. R. Webb,
On crossings, the crossing postman problem, and the rural postman problem, Networks: An International Journal, 34 (1999), 173-180.
doi: 10.1002/(SICI)1097-0037(199910)34:3<173::AID-NET1>3.0.CO;2-W. |
[17] |
R. Kala, A. Shukla and R. Tiwari,
Robotic path planning using evolutionary momentum-based exploration, Journal of Experimental and Theoretical Artificial Intelligence, 23 (2011), 469-495.
doi: 10.1080/0952813X.2010.490963. |
[18] |
E. L. Lawler, J. K. Lenstra, A. R. Kan and D. B. Shmoys, The traveling salesman problem: A Guided Tour of Combinatorial Optimization, John Wiley & Sons, Ltd., Chichester, 1985. |
[19] |
S. Lin and B. W. Kernighan,
An effective heuristic algorithm for the traveling-salesman problem, Operations Research, 21 (1973), 498-516.
doi: 10.1287/opre.21.2.498. |
[20] |
C. E. Miller, A. W. Tucker and R. A. Zemlin,
Integer programming formulation of traveling salesman problems, Journal of the ACM, 7 (1960), 326-329.
doi: 10.1145/321043.321046. |
[21] |
M. Padberg and G. Rinaldi,
A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems, SIAM Review, 33 (1991), 60-100.
doi: 10.1137/1033004. |
[22] |
D. J. Rosenkrantz, R. E. Stearns, P. M. Lewis and II,
An analysis of several heuristics for the traveling salesman problem, SIAM Journal on Computing, 6 (1977), 563-581.
doi: 10.1137/0206041. |
[23] |
J. Sankaranarayanan, H. Samet and A. Varshney,
A fast all nearest neighbor algorithm for applications involving large point-clouds, Computers and Graphics, 31 (2007), 157-174.
doi: 10.1016/j.cag.2006.11.011. |
[24] |
W. Sheng, N. Xi, M. Song and Y. Chen,
Robot path planning for dimensional measurement in automotive manufacturing, Journal of Manufacturing Science and Engineering, 127 (2005), 420-428.
doi: 10.1115/1.1870013. |
[25] |
T. Wu, B. Li, L. Wang and Y. Huang, Study on path-optimization by grade sorting dies, In IEEE International Conference on Mechatronics and Automation, (2010), 876–880.
doi: 10.1109/ICMA.2010.5589000. |
show all references
References:
[1] |
D. Applegate, R. Bixby, V. Chvátal and W. Cook,
Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems, Mathematical Programming, 97 (2003), 91-153.
doi: 10.1007/s10107-003-0440-4. |
[2] |
S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman and A. Y. Wu,
An optimal algorithm for approximate nearest neighbor searching, Journal of the ACM, 45 (1998), 891-923.
doi: 10.1145/293347.293348. |
[3] |
N. Christofides, Worst-case analysis of a new heuristic for the travelling salesman problem, Technical Report, 388, Graduate School of Industrial Administration, CMU, 1976. |
[4] |
N. Christofides, V. Campos, A. Corberan and E. Mota, An Algorithm for the Rural Postman Problem, , Imperical College, London, England, Tech. Report, 1981. |
[5] |
W. Cook, Concorde TSP solver, Available at: http://www.math.uwaterloo.ca/tsp/concorde/index.html. [Accessed on March 29, 2019], 2006. |
[6] |
A. Corberan and J. M. Sanchis,
A polyhedral approach to therural postman problem, European Journal of Operational Research, 79 (1994), 95-114.
doi: 10.1016/0377-2217(94)90398-0. |
[7] |
G. Cornuéjols, J. Fonlupt and D. Naddef,
The traveling salesman problem on a graph and some related integer polyhedra, Mathematical Programming, 33 (1985), 1-27.
doi: 10.1007/BF01582008. |
[8] |
H. Crowder and M. W. Padberg,
Solving large-scale symmetric travelling salesman problems to optimality, Management Science, 26 (1980), 495-509.
doi: 10.1287/mnsc.26.5.495. |
[9] |
M. Drexl,
On the generalized directed rural postman problem, Journal of the Operational Research Society, 65 (2014), 1143-1154.
doi: 10.1057/jors.2013.60. |
[10] |
M. Dror, Arc Routing: Theory, Solutions, and Applications, Kluwer, Boston, MA, 2000.
doi: 10.1007/978-1-4615-4495-1. |
[11] |
H. A. Eiselt, M. Gendreau and G. Laporte,
Arc routing problems, part Ⅱ: The rural postman problem, Operations Research, 43 (1995), 399-414.
doi: 10.1287/opre.43.3.399. |
[12] |
J. Edmond and E. L. Johnson,
Matching, Euler tour and the chinese postman problem, Mathematical Programming, 5 (1973), 88-124.
doi: 10.1007/BF01580113. |
[13] |
E. Fernández, O. Meza, R. Garfinkel and M. Ortega,
On the undirected rural postman problem: Tight bounds based on a new formulation, Operations Research, 51 (2003), 281-291.
doi: 10.1287/opre.51.2.281.12790. |
[14] |
J. Fonlupt and A. Nachef,
Dynamic programming and the graphical traveling salesman problem, Journal of the ACM (JACM), 40 (1993), 1165-1187.
doi: 10.1145/174147.169803. |
[15] |
R. W. Folyd, Algorithm 97: Shortest path, Communications of the ACM, 5 (1962), 345.
doi: 10.1145/367766.368168. |
[16] |
R. S. Garfinkel and I. R. Webb,
On crossings, the crossing postman problem, and the rural postman problem, Networks: An International Journal, 34 (1999), 173-180.
doi: 10.1002/(SICI)1097-0037(199910)34:3<173::AID-NET1>3.0.CO;2-W. |
[17] |
R. Kala, A. Shukla and R. Tiwari,
Robotic path planning using evolutionary momentum-based exploration, Journal of Experimental and Theoretical Artificial Intelligence, 23 (2011), 469-495.
doi: 10.1080/0952813X.2010.490963. |
[18] |
E. L. Lawler, J. K. Lenstra, A. R. Kan and D. B. Shmoys, The traveling salesman problem: A Guided Tour of Combinatorial Optimization, John Wiley & Sons, Ltd., Chichester, 1985. |
[19] |
S. Lin and B. W. Kernighan,
An effective heuristic algorithm for the traveling-salesman problem, Operations Research, 21 (1973), 498-516.
doi: 10.1287/opre.21.2.498. |
[20] |
C. E. Miller, A. W. Tucker and R. A. Zemlin,
Integer programming formulation of traveling salesman problems, Journal of the ACM, 7 (1960), 326-329.
doi: 10.1145/321043.321046. |
[21] |
M. Padberg and G. Rinaldi,
A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems, SIAM Review, 33 (1991), 60-100.
doi: 10.1137/1033004. |
[22] |
D. J. Rosenkrantz, R. E. Stearns, P. M. Lewis and II,
An analysis of several heuristics for the traveling salesman problem, SIAM Journal on Computing, 6 (1977), 563-581.
doi: 10.1137/0206041. |
[23] |
J. Sankaranarayanan, H. Samet and A. Varshney,
A fast all nearest neighbor algorithm for applications involving large point-clouds, Computers and Graphics, 31 (2007), 157-174.
doi: 10.1016/j.cag.2006.11.011. |
[24] |
W. Sheng, N. Xi, M. Song and Y. Chen,
Robot path planning for dimensional measurement in automotive manufacturing, Journal of Manufacturing Science and Engineering, 127 (2005), 420-428.
doi: 10.1115/1.1870013. |
[25] |
T. Wu, B. Li, L. Wang and Y. Huang, Study on path-optimization by grade sorting dies, In IEEE International Conference on Mechatronics and Automation, (2010), 876–880.
doi: 10.1109/ICMA.2010.5589000. |





Mu | The |
Ml | The |
r | The maximum mismatch ratio |
nx | The number of LEDs at the |
The threshold of empty positions in the column |
|
The lower bound of the upper component (initialized as Mu) | |
The upper bound of the lower component (initialized as Ml) | |
The collection of diode's |
|
The set of grades of diodes | |
A function mapping |
Mu | The |
Ml | The |
r | The maximum mismatch ratio |
nx | The number of LEDs at the |
The threshold of empty positions in the column |
|
The lower bound of the upper component (initialized as Mu) | |
The upper bound of the lower component (initialized as Ml) | |
The collection of diode's |
|
The set of grades of diodes | |
A function mapping |
1. Set |
2. If( |
3. While |
4. If |
5. If |
6. |
7. Else |
8. |
9. |
10. End if |
11. |
12. Else |
13. If |
14. |
15. Else |
16. |
17. |
18. End if |
19. |
20. End if |
21. |
22. End while |
23. End if |
1. Set |
2. If( |
3. While |
4. If |
5. If |
6. |
7. Else |
8. |
9. |
10. End if |
11. |
12. Else |
13. If |
14. |
15. Else |
16. |
17. |
18. End if |
19. |
20. End if |
21. |
22. End while |
23. End if |
Instance | Original problem size | Transformed problem size | Reduction | |||
Grade1 | 48 | 2,256 | 30 | 870 | 38% | 61% |
Grade2 | 74 | 5,402 | 108 | 11,556 | -46% | -114% |
Grade3 | 118 | 13,806 | 80 | 6,320 | 32% | 54% |
Grade4 | 396 | 156,420 | 126 | 15,750 | 68% | 90% |
Grade5 | 1,849 | 3,416,952 | 226 | 50,850 | 88% | 99% |
Grade6 | 3,921 | 15,370,320 | 164 | 26,732 | 96% | 100% |
Instance | Original problem size | Transformed problem size | Reduction | |||
Grade1 | 48 | 2,256 | 30 | 870 | 38% | 61% |
Grade2 | 74 | 5,402 | 108 | 11,556 | -46% | -114% |
Grade3 | 118 | 13,806 | 80 | 6,320 | 32% | 54% |
Grade4 | 396 | 156,420 | 126 | 15,750 | 68% | 90% |
Grade5 | 1,849 | 3,416,952 | 226 | 50,850 | 88% | 99% |
Grade6 | 3,921 | 15,370,320 | 164 | 26,732 | 96% | 100% |
Instance | |||||||||||
Grade1 | 33% | 33% | 33% | 38% | 38% | 38% | 38% | 38% | 38% | 38% | 38% |
Grade2 | -46% | -46% | -46% | -46% | -46% | -46% | -46% | -46% | -46% | -46% | -46% |
Grade3 | 32% | 32% | 32% | 32% | 32% | 32% | 32% | 32% | 32% | 32% | 32% |
Grade4 | 67% | 67% | 67% | 67% | 67% | 68% | 68% | 68% | 68% | 68% | 69% |
Grade5 | 87% | 87% | 87% | 87% | 88% | 88% | 88% | 88% | 88% | 88% | 88% |
Grade6 | 95% | 96% | 96% | 96% | 96% | 96% | 96% | 96% | 96% | 96% | 96% |
Instance | |||||||||||
Grade1 | 33% | 33% | 33% | 38% | 38% | 38% | 38% | 38% | 38% | 38% | 38% |
Grade2 | -46% | -46% | -46% | -46% | -46% | -46% | -46% | -46% | -46% | -46% | -46% |
Grade3 | 32% | 32% | 32% | 32% | 32% | 32% | 32% | 32% | 32% | 32% | 32% |
Grade4 | 67% | 67% | 67% | 67% | 67% | 68% | 68% | 68% | 68% | 68% | 69% |
Grade5 | 87% | 87% | 87% | 87% | 88% | 88% | 88% | 88% | 88% | 88% | 88% |
Grade6 | 95% | 96% | 96% | 96% | 96% | 96% | 96% | 96% | 96% | 96% | 96% |
Instance | |||||||||||
Grade1 | 55% | 55% | 55% | 61% | 61% | 61% | 61% | 61% | 61% | 61% | 61% |
Grade2 | -114% | -114% | -114% | -114% | -114% | -114% | -114% | -114% | -114% | -114% | -114% |
Grade3 | 54% | 54% | 54% | 54% | 54% | 54% | 54% | 54% | 54% | 54% | 54% |
Grade4 | 89% | 89% | 89% | 89% | 89% | 90% | 90% | 90% | 90% | 90% | 90% |
Grade5 | 98% | 98% | 98% | 98% | 98% | 98% | 98% | 99% | 99% | 99% | 99% |
Grade6 | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% |
Instance | |||||||||||
Grade1 | 55% | 55% | 55% | 61% | 61% | 61% | 61% | 61% | 61% | 61% | 61% |
Grade2 | -114% | -114% | -114% | -114% | -114% | -114% | -114% | -114% | -114% | -114% | -114% |
Grade3 | 54% | 54% | 54% | 54% | 54% | 54% | 54% | 54% | 54% | 54% | 54% |
Grade4 | 89% | 89% | 89% | 89% | 89% | 90% | 90% | 90% | 90% | 90% | 90% |
Grade5 | 98% | 98% | 98% | 98% | 98% | 98% | 98% | 99% | 99% | 99% | 99% |
Grade6 | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% |
Instance | Partitioning column | MTZ formulation | ||||
Run time(s) | Total cost | MIPGap | Run time(s) | Total cost | MIPGap | |
Grade1 | <1 | 227 | 0% | 7,200 | 229 | 42% |
Grade2 | 14 | 386 | 0% | 184 | 386 | 0% |
Grade3 | 8 | 393 | 0% | 7,200 | 444 | 61% |
Grade4 | 78 | 660 | 0% | |||
Grade5 | 260 | 2,078 | 0% | |||
Grade6 | 6,356 | 4,205 | 0% |
Instance | Partitioning column | MTZ formulation | ||||
Run time(s) | Total cost | MIPGap | Run time(s) | Total cost | MIPGap | |
Grade1 | <1 | 227 | 0% | 7,200 | 229 | 42% |
Grade2 | 14 | 386 | 0% | 184 | 386 | 0% |
Grade3 | 8 | 393 | 0% | 7,200 | 444 | 61% |
Grade4 | 78 | 660 | 0% | |||
Grade5 | 260 | 2,078 | 0% | |||
Grade6 | 6,356 | 4,205 | 0% |
Instance | Concord (with rounding to the nearest integer) |
Concorde (with four decimal place) |
|||
Run time(s) | Total cost | Rounding Error % | Run time(s) | Total cost | |
Grade1 | <1 | 227 | 0% | 1 | 227 |
Grade2 | <1 | 386 | 0% | 1 | 386 |
Grade3 | 1 | 393 | 0% | 1 | 394 |
Grade4 | 5 | 582 | 4% | 18 | 605 |
Grade5 | |||||
Grade6 | 42 | 3,926 |
Instance | Concord (with rounding to the nearest integer) |
Concorde (with four decimal place) |
|||
Run time(s) | Total cost | Rounding Error % | Run time(s) | Total cost | |
Grade1 | <1 | 227 | 0% | 1 | 227 |
Grade2 | <1 | 386 | 0% | 1 | 386 |
Grade3 | 1 | 393 | 0% | 1 | 394 |
Grade4 | 5 | 582 | 4% | 18 | 605 |
Grade5 | |||||
Grade6 | 42 | 3,926 |
Instance | Euclidean distance | Manhattan distance | ||
Concorde | Proposed algorithm | Concorde | Proposed algorithm | |
Grade1 | 227 | 227 | 258 | 258 |
Grade2 | 386 | 386 | 462 | 462 |
Grade3 | 394 | 393 | 430 | 428 |
Grade4 | 605 | 660 | 692 | 742 |
Grade5 | 2,078 | 2,154 | ||
Grade6 | 4,205 | 4,286 |
Instance | Euclidean distance | Manhattan distance | ||
Concorde | Proposed algorithm | Concorde | Proposed algorithm | |
Grade1 | 227 | 227 | 258 | 258 |
Grade2 | 386 | 386 | 462 | 462 |
Grade3 | 394 | 393 | 430 | 428 |
Grade4 | 605 | 660 | 692 | 742 |
Grade5 | 2,078 | 2,154 | ||
Grade6 | 4,205 | 4,286 |
[1] |
René Henrion, Christian Küchler, Werner Römisch. Discrepancy distances and scenario reduction in two-stage stochastic mixed-integer programming. Journal of Industrial and Management Optimization, 2008, 4 (2) : 363-384. doi: 10.3934/jimo.2008.4.363 |
[2] |
Elham Mardaneh, Ryan Loxton, Qun Lin, Phil Schmidli. A mixed-integer linear programming model for optimal vessel scheduling in offshore oil and gas operations. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1601-1623. doi: 10.3934/jimo.2017009 |
[3] |
Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete and Continuous Dynamical Systems - S, 2021, 14 (11) : 3953-3971. doi: 10.3934/dcdss.2020460 |
[4] |
Ye Tian, Cheng Lu. Nonconvex quadratic reformulations and solvable conditions for mixed integer quadratic programming problems. Journal of Industrial and Management Optimization, 2011, 7 (4) : 1027-1039. doi: 10.3934/jimo.2011.7.1027 |
[5] |
Wan Nor Ashikin Wan Ahmad Fatthi, Adibah Shuib, Rosma Mohd Dom. A mixed integer programming model for solving real-time truck-to-door assignment and scheduling problem at cross docking warehouse. Journal of Industrial and Management Optimization, 2016, 12 (2) : 431-447. doi: 10.3934/jimo.2016.12.431 |
[6] |
Mahmoud Ameri, Armin Jarrahi. An executive model for network-level pavement maintenance and rehabilitation planning based on linear integer programming. Journal of Industrial and Management Optimization, 2020, 16 (2) : 795-811. doi: 10.3934/jimo.2018179 |
[7] |
Jing Quan, Zhiyou Wu, Guoquan Li. Global optimality conditions for some classes of polynomial integer programming problems. Journal of Industrial and Management Optimization, 2011, 7 (1) : 67-78. doi: 10.3934/jimo.2011.7.67 |
[8] |
Mohamed A. Tawhid, Ahmed F. Ali. A simplex grey wolf optimizer for solving integer programming and minimax problems. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 301-323. doi: 10.3934/naco.2017020 |
[9] |
Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial and Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102 |
[10] |
Louis Caccetta, Syarifah Z. Nordin. Mixed integer programming model for scheduling in unrelated parallel processor system with priority consideration. Numerical Algebra, Control and Optimization, 2014, 4 (2) : 115-132. doi: 10.3934/naco.2014.4.115 |
[11] |
Edward S. Canepa, Alexandre M. Bayen, Christian G. Claudel. Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming. Networks and Heterogeneous Media, 2013, 8 (3) : 783-802. doi: 10.3934/nhm.2013.8.783 |
[12] |
Mahdi Roozbeh, Saman Babaie–Kafaki, Zohre Aminifard. Two penalized mixed–integer nonlinear programming approaches to tackle multicollinearity and outliers effects in linear regression models. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3475-3491. doi: 10.3934/jimo.2020128 |
[13] |
Zhiguo Feng, Ka-Fai Cedric Yiu. Manifold relaxations for integer programming. Journal of Industrial and Management Optimization, 2014, 10 (2) : 557-566. doi: 10.3934/jimo.2014.10.557 |
[14] |
Matthias Gerdts, René Henrion, Dietmar Hömberg, Chantal Landry. Path planning and collision avoidance for robots. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 437-463. doi: 10.3934/naco.2012.2.437 |
[15] |
Fanwen Meng, Kiok Liang Teow, Kelvin Wee Sheng Teo, Chee Kheong Ooi, Seow Yian Tay. Predicting 72-hour reattendance in emergency departments using discriminant analysis via mixed integer programming with electronic medical records. Journal of Industrial and Management Optimization, 2019, 15 (2) : 947-962. doi: 10.3934/jimo.2018079 |
[16] |
Xinmin Yang, Xiaoqi Yang. A note on mixed type converse duality in multiobjective programming problems. Journal of Industrial and Management Optimization, 2010, 6 (3) : 497-500. doi: 10.3934/jimo.2010.6.497 |
[17] |
Yi Gao, Rui Li, Yingjing Shi, Li Xiao. Design of path planning and tracking control of quadrotor. Journal of Industrial and Management Optimization, 2022, 18 (3) : 2221-2235. doi: 10.3934/jimo.2021063 |
[18] |
Poonam Savsani, Mohamed A. Tawhid. Discrete heat transfer search for solving travelling salesman problem. Mathematical Foundations of Computing, 2018, 1 (3) : 265-280. doi: 10.3934/mfc.2018012 |
[19] |
Zhimin Liu, Shaojian Qu, Hassan Raza, Zhong Wu, Deqiang Qu, Jianhui Du. Two-stage mean-risk stochastic mixed integer optimization model for location-allocation problems under uncertain environment. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2783-2804. doi: 10.3934/jimo.2020094 |
[20] |
Yongjian Yang, Zhiyou Wu, Fusheng Bai. A filled function method for constrained nonlinear integer programming. Journal of Industrial and Management Optimization, 2008, 4 (2) : 353-362. doi: 10.3934/jimo.2008.4.353 |
2020 Impact Factor: 1.801
Tools
Article outline
Figures and Tables
[Back to Top]